References
- Arner, E. S. and A. Holmgren. 2000. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267: 6102-6109. https://doi.org/10.1046/j.1432-1327.2000.01701.x
- Choi, S. U., C. K. Lee, Y. I. Hwang, H. Kinoshita, and T. Nihira. 2004. Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch. Microbiol. 181: 294-298. https://doi.org/10.1007/s00203-004-0654-8
- Choi, W. W., S. D. Park, S. M. Lee, H. B. Kim, Y. Kim, and H. S. Lee. 2008. The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS Microbiol. Lett. 290: 32-38.
- Chung, H. J., E. J. Kim, B. Suh, J. H. Choi, and J. H. Roe. 1999. Duplicate genes for Fe-containing superoxide dismutase in Streptomyces coelicolor A3(2). Gene 231: 87-93. https://doi.org/10.1016/S0378-1119(99)00088-8
- Crack, J. C., C. D. den Hengst, P. Jakimowicz, S. Subramanian, M. K. Jhonson, M. J. Buttner, et al. 2009. Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 48: 12252-12264. https://doi.org/10.1021/bi901498v
- Crack, J. C., L. J. Smith, M. R. Stapleton, J. Peck, N. J. Watmough, M. J. Buttner, et al. 2011. Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like protein. J. Am. Chem. Soc. 133: 1112-1121. https://doi.org/10.1021/ja109581t
- Davis, N. K. and K. F. Chater. 1992. The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol. Gen. Genet. 232: 351-358.
- den Hengst, C. D. and M. J. Buttner. 2008. Redox control in actinobacteria. Biochem. Biophys. Acta 1780: 1201-1216. https://doi.org/10.1016/j.bbagen.2008.01.008
- Goldsworthy, K. F., B. Gust, S. Mouz, G. Chandra, K. C. Findlay, and K. F. Chater. 2011. The actinobacteria-specific gene wblA controls major development transition in Streptomyces coelicolor A3(2). Microbiology 157: 1312-1328. https://doi.org/10.1099/mic.0.047555-0
- Gladyshev, V. N. 2001. Thioredoxin and peptide methionine sulfoxide reductase: Convergence of similar structure and function in distinct structural folds. Protein 46: 149-152.
- Jakimowicz, P., M. R. Cheesman, W. R. Bishai, K. F. Chater, A. J. Thomson, and M. J. Buttner. 2005. Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J. Biol. Chem. 280: 8309-8315.
- Kang, S. H., J. Huang, H. N. Lee, Y. A. Hur, S. N. Cohen, and E. S. Kim. 2007. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J. Bacteriol. 189: 4315-4319. https://doi.org/10.1128/JB.01789-06
- Kim, E. J., H. J. Chung, B. Suh, Y. C. Hah, and J. H. Roe. 1998. Expression and regulation of the sodF gene encoding iron- and zinc-containing superoxide dismutase in Streptomyces coelicolor Miller. J. Bacteriol. 180: 2014-2020.
- Kim, E. J., H. P. Kim, Y. C. Hah, and J. H. Roe. 1996. Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. Eur. J. Biochem. 241: 178-185. https://doi.org/10.1111/j.1432-1033.1996.0178t.x
- Kim, T. H., J. S. Park, H. J. Kim, Y. Kim, P. Kim, and H. S. Lee. 2005. The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem. Biophys. Res. Commun. 337: 757-764. https://doi.org/10.1016/j.bbrc.2005.09.115
- Mustacich, D. and G. Powis. 2000. Thioredoxin reductase. Biochem. J. 346: 1-8. https://doi.org/10.1042/0264-6021:3460001
- Paget, M. S., J. G. Kang, J. H. Roe, and M. J. Buttner. 1998. SigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 19: 5776-5782.
- Park, J. S., S. Shin, E. S. Kim, P. Kim, Y. Kim, and H. S. Lee. 2011. Identification of SpiA that interacts with Corynebacterium glutamicum WhcA using a two-hybrid system. FEMS Microbiol. Lett. 322: 8-14. https://doi.org/10.1111/j.1574-6968.2011.02318.x
-
Singh, A., L. Guidry, K. V. Narasimhulu, D. Mai, J. Trombley, K. E. Redding, et al. 2007. Mycobacterium tuberculosis WhiB3 responds to
$O_2$ and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc. Natl. Acad. Sci. USA 104: 11562-11567. https://doi.org/10.1073/pnas.0700490104 - Soliveri, J. A., J. Gomez, W. R. Bishai, and K. F. Chater. 2000. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146: 333-343.
Cited by
- A WblA-Binding Protein, SpiA, Involved in Streptomyces Oxidative Stress Response vol.23, pp.10, 2012, https://doi.org/10.4014/jmb.1306.06032
- Identification and Biotechnological Application of Novel Regulatory Genes Involved in Streptomyces Polyketide Overproduction through Reverse Engineering Strategy vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/549737
- An overview on transcriptional regulators in Streptomyces vol.1849, pp.8, 2012, https://doi.org/10.1016/j.bbagrm.2015.06.007
- Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources vol.101, pp.22, 2012, https://doi.org/10.1007/s00253-017-8545-5
- Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis vol.5, pp.None, 2012, https://doi.org/10.7717/peerj.2912
- In conditions of over-expression, WblI, a WhiB-like transcriptional regulator, has a positive impact on the weak antibiotic production of Streptomyces lividans TK24 vol.12, pp.3, 2012, https://doi.org/10.1371/journal.pone.0174781
- The actinobacterial WhiB‐like (Wbl) family of transcription factors vol.110, pp.5, 2012, https://doi.org/10.1111/mmi.14117
- Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters vol.17, pp.None, 2018, https://doi.org/10.1186/s12934-018-0874-2
- WblA, a global regulator of antibiotic biosynthesis in Streptomyces vol.48, pp.3, 2012, https://doi.org/10.1093/jimb/kuab007
- Activation of Cryptic Antibiotic Biosynthetic Gene Clusters Guided by RNA-seq Data from Both Streptomyces ansochromogenes and ΔwblA vol.10, pp.9, 2012, https://doi.org/10.3390/antibiotics10091097
- Streptomyces coelicolor Vesicles: Many Molecules To Be Delivered vol.88, pp.1, 2012, https://doi.org/10.1128/aem.01881-21