DOI QR코드

DOI QR Code

Neutralization of Human Papillomavirus by Specific Nanobodies Against Major Capsid Protein L1

  • Received : 2011.12.01
  • Accepted : 2012.01.04
  • Published : 2012.05.28

Abstract

The human papillomavirus (HPV) is the main cause of cervical cancer in developing countries. Rapid diagnosis and initiation of treatment of the HPV infection are critical. Various methods have been employed to reduce the immunogenicity of antibodies targeting HPV serotypes. Nanobodies are the smallest fragments of naturally occurring single-domain antibodies with their antigen-binding site compromised into a single domain. Nanobodies have remarkable properties such as high stability, solubility, and high homology to the human VH3 domain. In this study, a phagemid library was employed to enrich for nanobodies against the L1 protein of the human papilloma virus. Binding reactivity of the selected clones was evaluated using phage enzyme-linked immunosorbent assay (phage-ELISA). Finally, two nanobodies (sm5 and sm8) with the best reactivity against the Gardasil vaccine and the purified HPV-16 L1 protein were expressed and purified using a $Ni^+$-NTA column. The accuracy of expression and purification of the nanobodies was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting assays. In vitro studies demonstrated that neutralization was achieved by the selected nanobodies. The ease of generation and unique features of these molecules make nanobodies promising molecules for the new generation of HPV diagnosis and therapy.

Keywords

References

  1. Ahmadvand, D., M. J. Rasaee, F. Rahbarizadeh, R. E. Kontermann, and F. Sheikholislami. 2009. Cell selection and characterization of a novel human endothelial cell specific nanobody. Mol. Immunol. 46: 1814-1823. https://doi.org/10.1016/j.molimm.2009.01.021
  2. Chen, X. S., R. L. Garcea, I. Goldberg, G. Casini, and S. C. Harrison. 2000. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell. 5: 557-567. https://doi.org/10.1016/S1097-2765(00)80449-9
  3. Christensen, N. D., J. W. Kreider, N. M. Cladel, S. D. Patrick, and P. A. Welsh. 1990. Monoclonal antibody-mediated neutralization of infectious human papillomavirus type 11. J. Virol. 64: 5678- 5681.
  4. Christensen, N. D., C. A. Reed, N. M. Cladel, K. Hall, and G. S. Leiserowitz. 1996. Monoclonal antibodies to HPV-6 L1 virus-like particles identify conformational and linear neutralizing epitopes on HPV-11 in addition to type-specific epitopes on HPV-6. Virology 224: 477-486. https://doi.org/10.1006/viro.1996.0554
  5. Culp, T. D. and N. D. Christensen. 2003. Quantitative RT-PCR assay for HPV infection in cultured cells. J. Virol. Methods 111: 135-144. https://doi.org/10.1016/S0166-0934(03)00170-8
  6. Culp, T. D., C. M. Spatz, C. A. Reed, and N. D. Christensen. 2007. Binding and neutralization efficiencies of monoclonal antibodies, Fab fragments, and scFv specific for L1 epitopes on the capsid of infectious HPV particles. Virology 361: 435-446. https://doi.org/10.1016/j.virol.2006.12.002
  7. Day, P. M., C. D. Thompson, C. B. Buck, Y. Y. Pang, D. R. Lowy, and J. T. Schiller. 2007. Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J. Virol. 81: 8784-8792. https://doi.org/10.1128/JVI.00552-07
  8. Ganguly, N. and S. P. Parihar. 2009. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis. J. Biosci. 34: 113-123. https://doi.org/10.1007/s12038-009-0013-7
  9. Hamers-Casterman, C., T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers, E. B. Songa, et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363: 446-448. https://doi.org/10.1038/363446a0
  10. Harrison, J. L., S. C. Williams, G. Winter, and A. Nissim. 1996. Screening of phage antibody libraries. Methods Enzymol. 267: 83-109.
  11. Holliger, P. and P. J. Hudson. 2005. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23: 1126-1136. https://doi.org/10.1038/nbt1142
  12. Kemp, T. J., A. Hildesheim, M. Safaeian, J. G. Dauner, Y. Pan, C. Porras, et al. 2011. HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine 29: 2011-2014. https://doi.org/10.1016/j.vaccine.2011.01.001
  13. Kirnbauer, R., F. Booy, N. Cheng, D. R. Lowy, and J. T. Schiller. 1992. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA 89: 12180-12184. https://doi.org/10.1073/pnas.89.24.12180
  14. Kirnbauer, R., J. Taub, H. Greenstone, R. Roden, M. Durst, L. Gissmann, et al. 1993. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J. Virol. 67: 6929-6936.
  15. Klasse, P. J. and Q. J. Sattentau. 2001. Mechanisms of virus neutralization by antibody. Curr. Top. Microbiol. Immunol. 260: 87-108.
  16. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  17. Lin, K., K. Doolan, C. F. Hung, and T. C. Wu. 2010. Perspectives for preventive and therapeutic HPV vaccines. J. Formos. Med. Assoc. 109: 4-24. https://doi.org/10.1016/S0929-6646(10)60017-4
  18. Ludmerer, S. W., W. L. McClements, X. M. Wang, J. C. Ling, K. U. Jansen, and N. D. Christensen. 2000. HPV11 mutant virus-like particles elicit immune responses that neutralize virus and delineate a novel neutralizing domain. Virology 266: 237-245. https://doi.org/10.1006/viro.1999.0083
  19. Modis, Y., B. L. Trus, and S. C. Harrison. 2002. Atomic model of the papillomavirus capsid. EMBO J. 21: 4754-4762. https://doi.org/10.1093/emboj/cdf494
  20. Motoyama, S., C. A. Ladines-Llave, S. Luis Villanueva, and T. Maruo. 2004. The role of human papilloma virus in the molecular biology of cervical carcinogenesis. Kobe J. Med. Sci. 50: 9-19.
  21. Muyldermans, S. 2001. Single domain camel antibodies: Current status. J. Biotechnol. 74: 277-302.
  22. Parkin, D. M., M. Almonte, L. Bruni, G. Clifford, M. P. Curado, and M. Pineros. 2008. Burden and trends of type-specific human papillomavirus infections and related diseases in the Latin America and Caribbean region. Vaccine 26 (Suppl 11): L1-15.
  23. Parkin, D. M., F. Bray, J. Ferlay, and P. Pisani. 2005. Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108.
  24. Pastrana, D. V., C. B. Buck, Y. Y. Pang, C. D. Thompson, P. E. Castle, P. C. FitzGerald, et al. 2004. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321: 205-216. https://doi.org/10.1016/j.virol.2003.12.027
  25. Pathirana, D., P. Hillemanns, K. U. Petry, N. Becker, N. H. Brockmeyer, R. Erdmann, et al. 2009. Short version of the German evidence-based guidelines for prophylactic vaccination against HPV-associated neoplasia. Vaccine 27: 4551-4559. https://doi.org/10.1016/j.vaccine.2009.03.086
  26. Pomfret, T. C., J. M. Gagnon Jr., and A. T. Gilchrist. 2011. Quadrivalent human papillomavirus (HPV) vaccine: A review of safety, efficacy, and pharmacoeconomics. J. Clin. Pharm. Ther. 36: 1-9. https://doi.org/10.1111/j.1365-2710.2009.01150.x
  27. Rahbarizadeh, F., D. Ahmadvand, and Z. Sharifzadeh. 2011. Nanobody; an old concept and new vehicle for immunotargeting. Immunol. Invest. 40: 299-338. https://doi.org/10.3109/08820139.2010.542228
  28. Rahbarizadeh, F., M. J. Rasaee, M. Forouzandeh-Moghadam, and A. A. Allameh. 2005. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli. Protein Expr. Purif. 44: 32-38. https://doi.org/10.1016/j.pep.2005.04.008
  29. Rahbarizadeh, F., M. J. Rasaee, M. Forouzandeh, and A. A. Allameh. 2006. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol. Immunol. 43: 426-435. https://doi.org/10.1016/j.molimm.2005.03.003
  30. Rahbarizadeh, F., M. J. Rasaee, M. Forouzandeh Moghadam, A. A. Allameh, and E. Sadroddiny. 2004. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid. Hybridomics 23: 151-159. https://doi.org/10.1089/1536859041224334
  31. Rose, R. C., W. Bonnez, R. C. Reichman, and R. L. Garcea. 1993. Expression of human papillomavirus type 11 L1 protein in insect cells: In vivo and in vitro assembly of viruslike particles. J. Virol. 67: 1936-1944.
  32. Sawaya, G. F. 2009. Cervical-cancer screening - new guidelines and the balance between benefits and harms. N. Engl. J. Med. 361: 2503-2505. https://doi.org/10.1056/NEJMp0911380
  33. Virgin, H. W., M. A. Mann, and K. L. Tyler. 1994. Protective antibodies inhibit reovirus internalization and uncoating by intracellular proteases. J. Virol. 68: 6719-6729.
  34. White, W. I., S. D. Wilson, W. Bonnez, R. C. Rose, S. Koenig, and J. A. Suzich. 1998. In vitro infection and type-restricted antibody-mediated neutralization of authentic human papillomavirus type 16. J. Virol. 72: 959-964.
  35. Yang, T., L. Yang, W. Chai, R. Li, J. Xie, and B. Niu. 2011. A strategy for high-level expression of a single-chain variable fragment against TNFalpha by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220. Protein Expr. Purif. 76: 109-114. https://doi.org/10.1016/j.pep.2010.10.006
  36. Zhuge, W., F. Jia, G. Mackay, A. Kumar, and O. Narayan. 2001. Antibodies that neutralize SIV(mac)251 in T lymphocytes cause interruption of the viral life cycle in macrophages by preventing nuclear import of viral DNA. Virology 287: 436-445. https://doi.org/10.1006/viro.2001.1053

Cited by

  1. Single Domain Antibodies as New Biomarker Detectors vol.7, pp.4, 2017, https://doi.org/10.3390/diagnostics7040052
  2. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.00017
  3. Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein vol.20, pp.9, 2012, https://doi.org/10.3390/ijms20092088
  4. Nanobodies in Human Infections: Prevention, Detection, and Treatment vol.49, pp.8, 2020, https://doi.org/10.1080/08820139.2019.1688828
  5. Immunodiagnosis and Immunotherapeutics Based on Human Papillomavirus for HPV-Induced Cancers vol.11, pp.None, 2012, https://doi.org/10.3389/fimmu.2020.586796