DOI QR코드

DOI QR Code

Characteristics of a Novel Acinetobacter sp. and Its Kinetics in Hexavalent Chromium Bioreduction

  • M., Narayani (National Institute of Technology Karnataka) ;
  • K., Vidya Shetty (National Institute of Technology Karnataka)
  • Received : 2011.10.24
  • Accepted : 2012.01.17
  • Published : 2012.05.28

Abstract

Cr-B2, a Gram-negative hexavalent chromium [Cr(VI)] reducing bacteria, was isolated from the aerator water of an activated sludge process in the wastewater treatment facility of a dye and pigment based chemical industry. Cr-B2 exhibited a resistance for 1,100 mg/l Cr(VI) and, similarly, resistance against other heavy metal ions such as $Ni^{2+}$ (800 mg/l), $Cu^{2+}$ (600 mg/l), $Pb^{2+}$ (1,100 mg/l), $Cd^{2+}$ (350 mg/l), $ZN^{2+}$ (700 mg/l), and $Fe^{3+}$ (1,000 mg/l), and against selected antibiotics. Cr-B2 was observed to efficiently reduce 200 mg/l Cr(VI) completely in both nutrient and LB media, and could convert Cr(VI) to Cr(III) aerobically. Cr(VI) reduction kinetics followed allosteric enzyme kinetics. The $K_m$ values were found to be 43.11 mg/l for nutrient media and 38.05 mg/l for LB media. $V_{max}$ values of 13.17 mg/l/h and 12.53 mg/l/h were obtained for nutrient media and LB media, respectively, and the cooperativity coefficients (n) were found to be 8.47 and 3.49, respectively, indicating positive cooperativity in both cases. SEM analysis showed the formation of wrinkles and depressions in the cells when exposed to 800 mg/l Cr(VI) concentration. The organism was seen to exhibit pleomorphic behavior. Cr-B2 was identified on the basis of morphological, biochemical, and partial 16S rRNA gene sequencing chracterizations and found to be Acinetobacter sp.

Keywords

References

  1. Abboud, R., R. Popa, V. Souza-Egipsy, C. S. Giometti, S. Tollaksen, J. J. Mosher, et al. 2005. Low temperature growth of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 71: 811-816. https://doi.org/10.1128/AEM.71.2.811-816.2005
  2. American Public Health Association (APHA). 1998. Standard Methods for Examination of Water and Wastewater, 20th Ed. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington DC, USA.
  3. Bergogne-Berezin, E. and K. J. Towner. 1996. Acinetobacter spp. as nosocomial pathogens: Microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9: 148-165.
  4. Bolan, N. S., D. C Adriano, R. Natesan, and K. Bon-jun. 2003. Reduction and phytoavailability of Cr(VI) as influenced by organic manure compost. J. Environ. Qual. 32: 120-128.
  5. Bopp, L. H. and H. L. Ehrlich. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426-431. https://doi.org/10.1007/BF00422281
  6. Branco, R., M. C. Alpoim, and P. V. Morais. 2004. Ochrobactrum tritici strain 5bvI1 - characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain. Can. J. Microbiol. 50: 697-703. https://doi.org/10.1139/w04-048
  7. Dhakephalker, P. K. and B. A. Chopade. 1994. High levels of multiple metal resistances and its correlation to antibiotics resistance in environmental isolates of Acinetobacter. Biometals 7: 67-74.
  8. Gopalan, R. and H. Veeramani. 1977. Development of a Pseudomonas sp. for aerobic chromate reduction. Biotechnol. Tech. 46: 414-417.
  9. Horitsu, H., H. Nishida, H. Kato, and M. Tomoyeda. 1978. Isolation of potassium chromate tolerant bacterium and chromate uptake by the bacterium. Agric. Biol. Chem. 42: 2037-2043. https://doi.org/10.1271/bbb1961.42.2037
  10. Kvasnikov, E. I., T. I. Klyushnikova, T. P. Kasatkinsa, V. V. Stepanyuk, and S. L. Kuberskaya. 1988. Bacteria reducing chromium in nature and in industrial sewage. Mikrobiologiya 57: 680-685.
  11. Lameiras, S., C. Quintelas, and T. Tavares. 2008. Biosorption of Cr(VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresour. Technol. 99: 801-806. https://doi.org/10.1016/j.biortech.2007.01.040
  12. Lebedeva, E. V. and N. N. Lyalikova. 1979. Reduction of crocoite by Pseudomonas chromatophila species nova. Mikrobiologiya 48: 517-522.
  13. Lin, Z., Y. Zhu, T. L. Kalabegishvili, N. Y. Tsibakhashvili, and H. Y. Holman. 2006. Effect of chromate action on morphology of basalt-inhabiting bacteria. Mater. Sci. Eng. C 26: 610-612. https://doi.org/10.1016/j.msec.2005.06.058
  14. Masood, F. and A. Malik. 2011. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull. Environ. Contam. Toxicol. 86: 114-119. https://doi.org/10.1007/s00128-010-0181-z
  15. Luli, G. W., J. W. Talnagi, W. R. Strohl, and R. M. Pfister. 1983. Hexavalent chromium-resistant bacteria isolated from river sediments. Appl. Environ. Microbiol. 46: 846-854.
  16. McGrath, S. P. and S. Smith. 1990. Chromium and nickel, pp. 125. In B. J. Alloway (ed.). Heavy Metals in Soils. Wiley, New York.
  17. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  18. Nourbakhsh, M., Y. Sag, D. Ozer, Z. Aksu, T. Kutsal, and A. Calgar. 1994. A comparative study of various biosorbents for removal of chromium (e) ions from industrial wastewater. Process Biochem. 29: 1-5. https://doi.org/10.1016/0032-9592(94)80052-9
  19. Novick, R. P. and C. Roth. 1968. Plasmid linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95: 1335-1342.
  20. Pal, A. and A. K. Paul. 2004. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol. Res. 159: 347-354. https://doi.org/10.1016/j.micres.2004.08.001
  21. Pattanapipitpaisal, P., N. L. Brown, and L. E. Macaskie. 2001. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl. Microbiol. Biotechnol. 57: 257-261. https://doi.org/10.1007/s002530100758
  22. Pei, Quek, Shahir Shafinaz, Santhana Raj, A. Zakaria Zainul, and Ahmad Wani. 2009. Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J. Microbiol. Biotechnol. 6: 1085-1093.
  23. Petrilli, F. L. and S. De Flora. 1977. Toxicity and mutagenicity of hexavalent chromium on Salmonella Typhimurium. Appl. Environ. Microbiol. 33: 805-809.
  24. Puzon, G. J., A. R. Roberts, D. M. Kramer, and L. Xun. 2005. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ. Sci. Technol. 39: 2811-2817. https://doi.org/10.1021/es048967g
  25. Ramteke, P. W. 1997. Plasmid mediated co-transfer of antibiotic resistance and heavy metal resistance in coliforms. Indian J. Med. Microbiol. 37: 177-181.
  26. Rawlings, D. E. 1995. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments, pp. 9-17. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical Processing. 2nd Ed. Chile University.
  27. Rehman, A., A. Zahoor, A. Munner, and A. Hasnain. 2008. Chromium tolerance and reduction potential of a Bacillus sp. env3 isolated from metal contaminated wastewater. Bull. Environ. Contam. Toxicol. 81: 25-29. https://doi.org/10.1007/s00128-008-9442-5
  28. Remoundaki, E., A. Hatzikioseyian, and M. Tsezos. 2007. A systematic study of chromium solubility in the presence of organic matter: Consequences for treatment of chromium-containing waste water. J. Chem. Technol. Biotechnol. 82: 802-808. https://doi.org/10.1002/jctb.1742
  29. Romanenko, V. I. and V. N. Korenkov. 1977. A pure culture of bacterial cells assimilating chromates and bichromates as hydrogen acceptors when grown under anaerobic conditions. Mikrobiologiya 46: 414-417.
  30. Schottel, L., A. Mandal, D. Clark, S. Silver, and R. W. Hedges. 1974. Volatilization of mercury and organomercurials determined by F factor system in enteric bacilli. Nature 251: 335-337. https://doi.org/10.1038/251335a0
  31. Shuler, M. L. and F. Kargi. 2005. Bioprocess Engineering: Basic Concepts, pp. 67-69. 2nd Ed. Prentice Hall of India, New Delhi.
  32. Spain, A. 2003. Implications of microbial heavy metal resistance in the environment. Rev. Undergrad. Res. 2: 1-6.
  33. Srivastava, S and I. S. Thakur. 2007. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18: 637-646. https://doi.org/10.1007/s10532-006-9096-0
  34. Suzuki, T., N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, et al. 1992. NAD(P) H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174: 5340-5534.
  35. Thacker, U. and D. Madamwar. 2005. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 21: 891-899. https://doi.org/10.1007/s11274-004-6557-7
  36. Thacker, U., R. Parikh, Y. Shouche, and D. Madamwar. 2007. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour. Technol. 98: 1541-1547. https://doi.org/10.1016/j.biortech.2006.06.011
  37. Towner, K. J., E. Bergogne-Berezin, and C. A. Fewson. 1991. The Biology of Acinetobacter: Taxonomy, Clinical Importance, Molecular Biology, Physiology, Industrial Relevance. Plenum Publishing Corp, New York.
  38. Wang, P. C., T. Mori, K. Komori, M. Sasatsu, K. Toda, and H. Ohtake. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665-1669.
  39. Zakaria, A., Z. Zakaria, S. Surif, and W. A. Ahmad. 2007. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J. Hazard. Mater. 146: 30-38. https://doi.org/10.1016/j.jhazmat.2006.11.052
  40. Zahoor, A. and A. Rehman. 2009. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J. Environ. Sci. 21: 814-820. https://doi.org/10.1016/S1001-0742(08)62346-3

Cited by

  1. Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances vol.59, pp.4, 2012, https://doi.org/10.1007/s12223-014-0304-8
  2. Inhibitory and stimulating effect of single and multi-metal ions on hexavalent chromium reduction by Acinetobacter sp. Cr-B2 vol.30, pp.12, 2012, https://doi.org/10.1007/s11274-014-1748-3
  3. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI) vol.24, pp.33, 2017, https://doi.org/10.1007/s11356-016-7191-2
  4. Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode vol.5, pp.2, 2012, https://doi.org/10.1016/j.jece.2017.02.023
  5. Successive use of microorganisms to remove chromium from wastewater vol.104, pp.9, 2012, https://doi.org/10.1007/s00253-020-10533-y
  6. Bioreduction of Cr(VI) by Indigenously Isolated Bacterial Strains from Stream Sediment Contaminated with Tannery Waste vol.77, pp.7, 2012, https://doi.org/10.1007/s00284-020-01936-1
  7. Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review vol.329, pp.None, 2012, https://doi.org/10.1016/j.molliq.2020.115062
  8. Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium vol.777, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2021.146190