DOI QR코드

DOI QR Code

Production, Purification, and Characterization of Antifungal Metabolite from Pseudomonas aeruginosa SD12, a New Strain Obtained from Tannery Waste Polluted Soil

  • Dharni, Seema (Division of Agronomy and Soil Science, Central Institute of Medicinal and Aromatic Plants) ;
  • Alam, Mansoor (Department of Plant Pathology, Central Institute of Medicinal and Aromatic Plants) ;
  • Kalani, Komal (Department of Analytical Chemistry, Central Institute of Medicinal and Aromatic Plants) ;
  • Abdul-Khaliq, Abdul-Khaliq (Department of Plant Pathology, Central Institute of Medicinal and Aromatic Plants) ;
  • Samad, Abdul (Department of Plant Pathology, Central Institute of Medicinal and Aromatic Plants) ;
  • Srivastava, Santosh Kumar (Department of Analytical Chemistry, Central Institute of Medicinal and Aromatic Plants) ;
  • Patra, Dharani Dhar (Division of Agronomy and Soil Science, Central Institute of Medicinal and Aromatic Plants)
  • Received : 2011.09.23
  • Accepted : 2012.01.13
  • Published : 2012.05.28

Abstract

A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind.

Keywords

References

  1. Abken, H. J., M. Tietze, J. Brodersen, S. Baumer, U. Beifuss, and U. Deppenmeier. 1998. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gol. J. Bacteriol. 180: 2027-2032.
  2. Alam, M., A. Sattar, Abdul-Khaliq, A. Samad, and S. P. S. Khanuja. 2006. A root rot and wilt disease of pyrethrum (Chrysanthemum cineraefolium) caused by Rhizoctonia solani AG-4 in the north Indian Plains. Plant Pathol. 55: 301.
  3. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  4. Anjaiah, V., N. Koedam, B. Nowak-Thompson, J. E. Loper, M. Hofte, J. T. Tambong, and P. Cornelis. 1998. Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium sp. and Pythium sp. Mol. Plant Microbe Interact. 11: 847-854. https://doi.org/10.1094/MPMI.1998.11.9.847
  5. Arnow, L. E. 1937. Colorimetric determination of the component of 3,4-hydoxyphenyl-alanine-tyrosine mixture. J. Biol. Chem. 118: 531-537.
  6. Bakker, A. W. and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol. Biochem. 19: 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  7. Bergey, D. H. and R. S. Breed. 1957. Bergey's Manual Determinative Bacteriology. Williams and Wilkins Co., Baltimore, USA.
  8. Bossis, E., P. Lemanceau, X. Latour, and L. Gardan. 2000. The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: Current status and need for revision. Agronomie 20: 51-63.
  9. Buysens, S., K. Heungens, J. Poppe, and M. Hofte. 1996. Invovement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62: 865-871.
  10. Cattelan, A. J., P. G Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth promoting rhizobacteria (PGPR) to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  11. Chin-A-Woeng, T. F. C., G. V. Bloemberg, and B. J. J. Lugtenberg. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503-523. https://doi.org/10.1046/j.1469-8137.2003.00686.x
  12. Chin-A-Woeng, T. F. C., G. V. Bloemberg, A. J. vander Bij, K. M. G. M. van der Drift, J. Schripsema, B. Kroon, et al. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 11: 1069-1077. https://doi.org/10.1094/MPMI.1998.11.11.1069
  13. Csaky, T. Z. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2: 450-454.
  14. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
  15. Gurusiddaiah, S., D. M. Weller, A. Sarkar, and R. J. Cook. 1986. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob. Agents Chemother. 29: 488-495. https://doi.org/10.1128/AAC.29.3.488
  16. Hammeda, B., Y. Harish Kumar Reddy, O. P. Rupela, G. N. Kumar, and G. Reddy. 2006. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Curr. Microbiol. 53: 298-302. https://doi.org/10.1007/s00284-006-0004-y
  17. Hammond, S. M. and P. A. Lambert. 1978. Antimicrobial Actions, pp. 4-9. Edward Arnold Ltd., London.
  18. Haas, D. and G. Defago. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 4: 307-319. https://doi.org/10.1038/nrd1691
  19. Holliman, F. G. 1969. Pigments of Pseudomonas species. Part I. Structure and synthesis of aeruginosin A. J. Chem. Soc. Perkin-1 18: 2514-2516.
  20. Iswandi, A., P. Bossier, J. Vandenabeele, and W. Verstraete. 1987. Effect of seed inoculation with the rhizopseudomonad strain 7NSK2 on the root microbiota of maize (Zea mays) and barley (Hordeum vulgare). Biol. Fertil. Soils 3: 153-158. https://doi.org/10.1007/BF00255776
  21. Jackson, M. L. 1973. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd, New Delhi.
  22. Kerr, J. R., G. W. Taylor, A. Rutman, N. Hoiby, P. J. Cole, and R. Wilson. 1999. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J. Clin. Pathol. 52: 385-387. https://doi.org/10.1136/jcp.52.5.385
  23. King, E. O., M. K. Ward, and D. E Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307.
  24. Kumar, R. S., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, O. Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154. https://doi.org/10.1111/j.1365-2672.2004.02435.x
  25. Ligon, J. M., D. S. Hill, P. E. Hammer, N. R. Torkewitz, D. Hofmann, H.-J. Kempf, and K.-H. van Pee. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci. 56: 688-695. https://doi.org/10.1002/1526-4998(200008)56:8<688::AID-PS186>3.0.CO;2-V
  26. Mavordi, D. V., R. F. Bonsall, S. M. Delaney, M. J. Soule, G. Phillips, and L. S Thomashow. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazines-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183: 6454-6465. https://doi.org/10.1128/JB.183.21.6454-6465.2001
  27. Massengale, A. R., R. A. Ollar, S. J. Giordano, M. S. Felder, and S. C. Aronoff. 1999. Use of parrafins wax bating for identification of Pseudomonas aeruginosa clinical isolates. Diagn. Microbiol. Infect. Dis. 35: 177. https://doi.org/10.1016/S0732-8893(99)00075-9
  28. Mavrodi, D. V., W. Blankenfeldt, and L. S. Thomashow. 2006. Phenazine compounds in fluorescent Pseudomonas spp: Biosynthesis and regulation. Annu. Rev. Phytopathol. 44: 417-445. https://doi.org/10.1146/annurev.phyto.44.013106.145710
  29. Naik, P. R., N. Sahoo, D. Goswami, N. Ayyadurai, and N. Sakthivel. 2008. Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microbial Ecol. 56: 492-504. https://doi.org/10.1007/s00248-008-9368-9
  30. Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  31. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17: 363-370.
  32. Rezzonico, F., M. Zala, C. Keel, B. Duffy, Y. Moenne-Loccoz, and G. Defago. 2007. Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol. 173: 861-872. https://doi.org/10.1111/j.1469-8137.2006.01955.x
  33. Saosoong, K., W. Wongphathanakul, C. Poasiri, and C. Ruangviriyachai. 2009. Isolation and analysis of antibacterial substance produced from P. aeruginosa TISTR 781. KKU Sci. J. 37: 163-172.
  34. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  35. Smibert, R. M. and N. R. Krieg. 1994. Phenotypic characterization, pp. 607-654. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC.
  36. Sokal, R. R. and F. J. Rholf. 1981. Biometry: The Principle and Practices of Statics in Biological Research, 2nd Ed. Freeman, San Francisco, New York.
  37. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  38. Zhaung, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ. Int. 33: 406-413. https://doi.org/10.1016/j.envint.2006.12.005

Cited by

  1. Characterization and evaluation of Staphylococcus sp. strain LZ16 for the biological control of rice blast caused by Magnaporthe oryzae vol.65, pp.3, 2012, https://doi.org/10.1016/j.biocontrol.2013.03.016
  2. Purification, Characterization, and in Vitro Activity of 2,4-Di-tert-butylphenol from Pseudomonas monteilii PsF84: Conformational and Molecular Docking Studies vol.62, pp.26, 2014, https://doi.org/10.1021/jf5001138
  3. Purification and molecular and biological characterisation of the 1-hydroxyphenazine, produced by an environmental strain of Pseudomonas aeruginosa vol.30, pp.12, 2012, https://doi.org/10.1007/s11274-014-1736-7
  4. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex vol.5, pp.None, 2015, https://doi.org/10.1038/srep17190
  5. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide vol.32, pp.3, 2012, https://doi.org/10.1007/s11274-015-1987-y
  6. Enhanced production of phenazine‐like metabolite produced by Streptomyces aurantiogriseus VSMGT1014 against rice pathogen, Rhizoctonia solani vol.56, pp.2, 2012, https://doi.org/10.1002/jobm.201500362
  7. In Vitro Inhibition of Saprolegnia sp. by an Antifungal Peptide from Pseudomonas protegens XL03 vol.79, pp.2, 2012, https://doi.org/10.1080/15222055.2016.1259701
  8. The Anti-activator QslA Negatively Regulates Phenazine-1-Carboxylic Acid Biosynthesis by Interacting With the Quorum Sensing Regulator MvfR in the Rhizobacterium Pseudomonas aeruginosa Strain PA1201 vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.01584
  9. In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum vol.28, pp.1, 2018, https://doi.org/10.1186/s41938-018-0097-1
  10. The effect of salt-tolerant antagonistic bacteria from tomato rhizosphere on plant growth promotion and damping-off disease suppression under salt-stress conditions vol.70, pp.1, 2012, https://doi.org/10.1080/09064710.2019.1668956
  11. 장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진 vol.26, pp.4, 2012, https://doi.org/10.5423/rpd.2020.26.4.210
  12. Antifungal activity of bacterial strains from maize silks against Fusarium verticillioides vol.204, pp.1, 2012, https://doi.org/10.1007/s00203-021-02726-4