DOI QR코드

DOI QR Code

Identification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis

  • Lu, Mingshou (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Soo-Jin (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Bo-Rim (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Chang-Hun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University) ;
  • Park, Kyung-Moon (Department of Biological and Chemical Engineering, Hongik University) ;
  • Lee, Sang-Yup (College of Science and Bioengineering, KAIST) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2011.12.08
  • Accepted : 2012.01.14
  • Published : 2012.05.28

Abstract

2,3-Butanediol (2,3-BDO) is an organic compound with a wide range of industrial applications. Although Escherichia coli is often used for the production of organic compounds, the wild-type E. coli does not contain two essential genes in the 2,3-BDO biosynthesis pathway, and cannot ferment 2,3-BDO. Therefore, a 2,3-BDO biosynthesis mutant strain of Escherichia coli was constructed and cultured. To determine the optimum culture factors for 2,3-BDO production, experiments were conducted under different culture environments ranging from strongly acidic to neutral pH. The extracellular metabolite profiles were obtained using high-performance liquid chromatography (HPLC), and the intracellular metabolite profiles were analyzed by ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Metabolic flux analysis (MFA) was used to integrate these profiles. The metabolite profiles showed that 2,3-BDO production favors an acidic environment (pH 5), whereas cell mass favors a neutral environment. Furthermore, when the pH of the culture fell below 5, both the cell growth and 2,3-BDO production were inhibited.

Keywords

References

  1. Biebl, H., A. P. Zeng, K. Menzel, and W. D. Deckwer. 1998. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumonia. Appl. Microbiol. Biotechnol. 50: 24-29. https://doi.org/10.1007/s002530051251
  2. Bonarius, H. P., V. Hatzimanikatis, K. P. Meesters, C. D. de Gooijer, G. Schmid, and J. Tramper. 1995. Metabolic flux analysis of hybridoma cells in different culture media using mass balance. Biotechnol. Bioeng. 50: 299-318.
  3. Bryn, K., J. C. Ulstrup, and F. C. Stormer. 1973. Effect of acetate upon the formation of acetoin in Klebsiella and Enterobacter and its possible practical application in a rapid Voges-Proskauer test. Appl. Microbiol. 25: 511-512.
  4. Celinska, E. and W. Grajek. 2009. Biotechnological production of 2,3-butanediol - Current state and prospects. Biotechnol. Adv. 20: 715-725.
  5. Emerson, R. R., M. C. Flickinger, and G. T. Tsao. 1982. Kinetics of dehydration of aqueous 2,3-butanediol to methyl ethyl ketone. Ind. Eng. Chem. Prod. Res. Dev. 21: 473-477. https://doi.org/10.1021/i300007a025
  6. Ji, X. J., H. Huang, and P. K. Ouyang. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 29: 351-364. https://doi.org/10.1016/j.biotechadv.2011.01.007
  7. Jorgensen, H., J. Nielsen, J. Villadsen, and H. Mollgaard. 1995. Metabolic flux distribution in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46: 117-131. https://doi.org/10.1002/bit.260460205
  8. Maddox, I. S. 2008. Microbial production of 2,3-butanediol. pp. 269-291. In H. J. Rehm and G. Reed (eds.). Biotechnology Set, 2nd Ed. Wiley, New York.
  9. Nielsen, D. R., S. H. Yoon, C. J. Yuan, and K. L. Prather. 2010. Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in Escherichia coli. Biotechnol. J. 5: 274-284. https://doi.org/10.1002/biot.200900279
  10. Nissen, T. L., U. Schulze, J. Nielsen, and J. Villadsen. 1997. Flux distribution in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143: 203-218. https://doi.org/10.1099/00221287-143-1-203
  11. Ohashi, Y., A. Hirayama, T. Ishikawa, S. Nakamura, K. Shimizu, Y. Ueno, et al. 2008. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. Biosyst. 4: 135-147. https://doi.org/10.1039/b714176a
  12. Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
  13. Stephanopoulos, G. N., A. A. Aristido, and J. Nielsen. 1998. Metabolic Engineering, Principles and Methodologies. Academic Press, San Diego.
  14. Van Houdt, R., A. Aertsen, and C. W. Michiels. 2007. Quorum-sensing- dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res. Microbiol. 158: 379-385. https://doi.org/10.1016/j.resmic.2006.11.015
  15. Winer, C. L., W. B. Dunn, S. Schuler, D. Broadhurst, R. Jarvis, G. M. Stephens, and R. Goodacre. 2008. Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Anal. Chem. 80: 2939-2948. https://doi.org/10.1021/ac7023409
  16. Xiu, Z. L. and A. P. Zeng. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926. https://doi.org/10.1007/s00253-008-1387-4
  17. Yim, H., R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, et al. 2011. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chem. Biol. dio:1038/NCHEMBIO.580.
  18. Zeng, A. P., H. Biebl, and W. D. Deckwer. 1990. Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl. Microbiol. Biotechnol. 33: 485-489.

Cited by

  1. Systematic Applications of Metabolomics in Metabolic Engineering vol.2, pp.4, 2012, https://doi.org/10.3390/metabo2041090
  2. Increased 2,3-butanediol production by changing codon usages inEscherichia coli : Increased 2,3-Butanediol Production vol.61, pp.5, 2014, https://doi.org/10.1002/bab.1216
  3. Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio‐basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten vol.127, pp.11, 2012, https://doi.org/10.1002/ange.201409033
  4. Advanced Biotechnology: Metabolically Engineered Cells for the Bio‐Based Production of Chemicals and Fuels, Materials, and Health‐Care Products vol.54, pp.11, 2012, https://doi.org/10.1002/anie.201409033
  5. Biovalorization of saccharides derived from industrial wastes such as whey: a review vol.16, pp.1, 2012, https://doi.org/10.1007/s11157-016-9417-7