DOI QR코드

DOI QR Code

Stabilization of a Raw-Starch-Digesting Amylase by Multipoint Covalent Attachment on Glutaraldehyde-Activated Amberlite Beads

  • Nwagu, Tochukwu N. (Microbiology Department, Faculty of Biological Sciences, University of Nigeria) ;
  • Okolo, Bartho N. (Microbiology Department, Faculty of Biological Sciences, University of Nigeria) ;
  • Aoyagi, Hideki (Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba)
  • Received : 2011.08.25
  • Accepted : 2012.01.04
  • Published : 2012.05.28

Abstract

Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at $60^{\circ}C$, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at $40^{\circ}C$. The apparent $K_m$ of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.

Keywords

References

  1. Anita, A., C. A. Sastry, and M. A. Hashim. 1997. Immobilization of urease using Amberlite MB-1. Bioprocess Eng. 17: 355-399. https://doi.org/10.1007/s004490050397
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Busto, M. D., N. Ortega, and P. Mateoz. 2004. Characterization of microbial endo-$\beta$-glucanase immobilized in alginate beads. Acta Biotechnol. 18: 189-200.
  4. Cao, L. 2005. Carrier-Bound Immobilized Enzymes: Principles, Applications and Design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  5. Cao, L. 2005. Immobilized enzymes: Science or art? Curr. Opin. Chem. Biol. 9: 217-226. https://doi.org/10.1016/j.cbpa.2005.02.014
  6. Chakrabarti, A. C. and K. B. Storey. 1988. Immobilization of cellulase using polyurethane foam. Appl. Biochem. Biotechnol. 19: 189-207. https://doi.org/10.1007/BF02921483
  7. Cordeiro, C. A. M., M. L. L. Martins, and A. B. Luciano. 2002. Production and properties of $\alpha$-amylase from thermophilic Bacillus sp. Braz. J. Biotechnol. 33: 145-157.
  8. Dey, G., V. Nagpal, and R. Banerjee. 2002. Immobilization of $\alpha$-amylase produced from Bacillus circulans GRS 313. Braz. Arch. Biol. Technol. 46: 167-176.
  9. Dwevedi, A. and A. M. Kayastha. 2009. Stabilization of $\beta$-galactosidase (from Peas) by immobilization onto Amberlite MB-150 beads and its application in lactose hydrolysis. J. Agric. Food Chem. 57: 682-688. https://doi.org/10.1021/jf802573j
  10. Fernandez, K. F., C. S. Lima, H. Pinho, and C. H. Collins. 2003. Immobilization of horseradish peroxidase on to polyaniline polymers. Process Biochem. 38: 1379-1384 https://doi.org/10.1016/S0032-9592(03)00021-9
  11. Fisher, J. 2008. Enzyme immobilization on polymeric resins: Amberlite and duolite strive to improve catalysis economics through reuse. Genet. Eng. Biotechnol. News 18: 17.
  12. Hasirci, N., S. Aksoy, and H. Tumturk. 2006. Activation of poly (dimer acid-co-alkyl polyamine) particles for covalent immobilization of $\alpha$-amylase. React. Funct. Polym. 66: 1546-1551. https://doi.org/10.1016/j.reactfunctpolym.2006.05.004
  13. Ida, I. J., T. Matsuyama, and H. Yamamoto. 2000. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment using SPCP-CVD. Biochem. Eng. J. 5: 179-186. https://doi.org/10.1016/S1369-703X(00)00058-9
  14. Janecek, S., B. Svensson, and E. A. MacGregor. 2003. Relation between domain evolution, specificity, and taxonomy of the $\alpha$-amylase family members containing a C-terminal starch bindingdomain. Eur. J. Biochem. 270: 635-645. https://doi.org/10.1046/j.1432-1033.2003.03404.x
  15. Kahraman, M. V., G. Bayramoglu, N. Kayaman-Apohan, and A. Gungor. 2007. UV-Curable methacrylated/fumaric acid modified epoxy as a potential support for enzyme immobilization. React. Funct. Polym. 67: 1385-1392.
  16. Kahraman, M. V., G. Bayramoglu, N. Kayaman-Apohan, and A. Gungor. 2007. $\alpha$-Amylase immobilization on functionalized glass beads by covalent attachment. Food Chem. 104: 1385-1392. https://doi.org/10.1016/j.foodchem.2007.01.054
  17. Kotwal, S. M. and V. Shankar. 2009. Immobilized invertase. Biotechnol. Adv. 27: 311-322. https://doi.org/10.1016/j.biotechadv.2009.01.009
  18. Kumari, A. and A. Kayastha. 2011. Immobilization of soybean (Glycine max) $\alpha$-amylase onto chitosan and Amberlite MB-150 beads: Optimization and characterization. J. Mol. Catal. B Enzym. 69: 8-14. https://doi.org/10.1016/j.molcatb.2010.12.003
  19. Li, T., S. Li, N. Wang, and L. Tain. 2008. Immobilization and stabilization of pectinase by multipoint attachment onto an activated agar-gel support. Food Chem. 109: 703-708. https://doi.org/10.1016/j.foodchem.2008.01.012
  20. Liu, X. D. and Y. Xu. 2008. A novel raw starch digesting $\alpha$-amylase from a newly isolated Bacillus sp. YX-1: Purification and characterization. Bioresour. Technol. 99: 4314-4320.
  21. Lo, Y. S. and C. O. Ibrahim. 2005. Some characteristics of Amberlite XAD-7-adsorbed lipase from Pseudomonas sp. AK. Malay. J. Microbiol. 1: 53-56.
  22. Mason, R. D. and H. H. Weetal. 1972. Invertase covalently coupled to porous glass preparation and characterization. Biotechnol. Bioeng. 14: 637-645. https://doi.org/10.1002/bit.260140409
  23. Mateo, C., M. Palomo Jose, G. Fernandez-Lorente, R. Fernandez-Lafuente, and J. M. Guisan. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  24. Miller, G. L. 1959. Use of dinitro-salicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  25. Mohapatra, B. R., D. W. Gould, O. Dinardo, S. Papavinasam, D. W. Koren, and W. Revie. 2008. Effect of immobilization on kinetic and thermodynamic characteristics of sulfide oxidase from Arthrobacter species. Prep. Biochem. Biotechnol. 38: 61-73.
  26. Munjal, N. and S. K. Sawhney. 2003. Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme Microb. Technol. 30: 613-619.
  27. Okolo, B. N., F. S. Ire, L. I. Ezeogu, C. U. Anyanwu, and F. J. C. Odibo. 2001. Purification and some properties of a novel raw starch-digesting amylase from Aspergillus carbonarius. J. Sci. Food Agric. 81: 329-336. https://doi.org/10.1002/1097-0010(200102)81:3<329::AID-JSFA815>3.0.CO;2-3
  28. Ortega, N., M. Perez-Mateos, M. C. Pilar, and M. Busto. 2009. Neutrase immobilization on alginate glutaraldehyde beads by covalent attachment. J. Agric. Food Chem. 57: 109-115. https://doi.org/10.1021/jf8015738
  29. Platkova, Z., M. Polakovic, M. Stefuca, M. Vandakova, and M. Antosova. 2006. Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chem. Pap. 60: 469-472. https://doi.org/10.2478/s11696-006-0085-x
  30. Reshmi, R., G. Sanjay, and S. Sugunan. 2006. Enhanced activity and stability of $\alpha$-amylase immobilized on alumina. Catal. Commun. 7: 460-465. https://doi.org/10.1016/j.catcom.2006.01.001
  31. Reshmi, R., G. Sanjay, and S. Sugunan. 2007. Immobilization of $\alpha$-amylase on zirconia: A heterogeneous biocatalyst for starch hydrolysis. Catal. Commun. 8: 393-399. https://doi.org/10.1016/j.catcom.2006.07.009
  32. Robertson, G., D. Wang, C. Lee, K. Wasschal, M. Smith, and W. Orts. 2006. Native or raw starch digestion: A key step in energy efficient biorefining of grain. J. Agric. Food Chem. 54: 353-365. https://doi.org/10.1021/jf051883m
  33. Rodrigues, D. S., W. Adriano, A. Mendesa, W. S. Adriano, L. Goncalves, and R. Giordano. 2008. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B Enzym. 5: 100-109.
  34. Sarikaya, E., T. Higassa, M. Adachi, and B. Mikami. 2000. Comparison of degradation abilities of $\alpha$- and $\beta$-amylases on raw starch granules. Process Biochem. 35: 711-715. https://doi.org/10.1016/S0032-9592(99)00133-8
  35. Sharma, S., L. Agarwal, and R. K. Saxena. 2008. Purification, immobilization and characterization of tannase from Penicillium variable. Bioresour. Technol. 99: 2544-2551. https://doi.org/10.1016/j.biortech.2007.04.035
  36. Shewale, S. D. and A. B. Pandit. 2007. Hydrolysis of soluble starch using Bacillus licheniformis on superporous CELEBEADS. Carbohydr. Res. 342: 997-1008. https://doi.org/10.1016/j.carres.2007.02.027
  37. Silva, C. J. M., F. Sousa, G. Gubitz, and A. Cavaco-Paulo. 2004. Chemical modifications on proteins using glutaraldehyde. Food Technol. Biotechnol. 42: 51-56.
  38. Tanriseven, A. and Z. Olcer. 2008. A novel method for the immobilization of glucoamylase onto polyglutaraldehyde-activated gelatin. Biochem. Eng. J. 39: 430-434. https://doi.org/10.1016/j.bej.2007.10.011
  39. Tiller, J. C., R. Rieseler, P. Berlin, and D. Klemm. 2002. Stabilization of activity of oxidoreductases by their immobilization onto special functionalized glass and novel aminocellulose film using different coupling agents. Biomacromolecule. 3: 1021-1029. https://doi.org/10.1021/bm020041i
  40. Tripathi, P., A. Kumari, P. Rath, and A. Kayastha. 2007. Immobilization of amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: A comparative study. J. Mol. Catal. B Enzym. 49: 69-74. https://doi.org/10.1016/j.molcatb.2007.08.011
  41. Turunc, O., M. V. Kahraman, A. S. Akdemir, N. Kauahan-Apohan, and A. Gungor. 2009. Immobilization of $\alpha$-amylase onto cyclic carbonate bearing hybrid material. Food Chem. 112: 992-997. https://doi.org/10.1016/j.foodchem.2008.07.024
  42. Varavinit, S., N. Chaokasem, and S. Shobsngob. 2002. Immobilization of a thermostable alpha amylase. Asia 28: 247-251. https://doi.org/10.2306/scienceasia1513-1874.2002.28.247
  43. Yagar, H., F. Ertan, and B. Balkan. 2008. Comparison of some properties of free and immobilized $\alpha$-amylase by Aspergillus sclerotiorum in calcium alginate beads. Prep. Biochem. Biotechnol. 38: 13-23.

Cited by

  1. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization vol.4, pp.4, 2012, https://doi.org/10.1039/c3ra45991h
  2. Effect of pH on the Formation of Lysosome-Alginate Beads for Antimicrobial Activity vol.25, pp.2, 2015, https://doi.org/10.4014/jmb.1410.10023
  3. Enhancement of the Anti-inflammatory Effect of Bromelain by Its Immobilization on Probiotic Spore of Bacillus cereus vol.13, pp.3, 2012, https://doi.org/10.1007/s12602-020-09714-y