DOI QR코드

DOI QR Code

Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus

  • Received : 2011.07.07
  • Accepted : 2012.01.18
  • Published : 2012.05.28

Abstract

Silver nanoparticles production by the green chemistry approach was investigated using an isolated marine actinomycetes strain. The isolated strain was identified as Streptomyces albidoflavus based on chemotaxonomic and ribotyping properties. The strain revealed production of silver nanoparticles both extracellular and intracellularly. Surface Plasmon Resonance analysis with the function of time revealed that particle synthesis by this strain is reaction time dependent. The produced particles were spherical shaped and monodispersive in nature and showed a single surface plasmon resonance peak at 410 nm. Size distribution histograms indicated production of 10-40-nm-size nanoparticles with a mean size of 14.5 nm. FT-IR spectra of nanopartilces showed N-H, C-H, and C-N stretching vibrations, denoting the presence of amino acid/peptide compounds on the surface of silver nanoparticles produced by S. albidoflavus. Synthesized nanoparticles revealed a mean negative zeta potential and electrophoretic mobility of -8.5 mV and -0.000066 $cm^2/Vs$, respectively. The nanoparticles produced were proteinaceous compounds as capping agents with -8.5 mV zeta potential and revealed antimicrobial activity against both Gram-negative and -positive bacterial strains. Owing to their small size, these particles have greater impact on industrial application spectra.

Keywords

References

  1. Absar, A., S. Satyajyoti, M. I. Khan, K. Rajiv, and M. Sastry. 2005. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 1: 47-53. https://doi.org/10.1166/jbn.2005.012
  2. Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B 28: 313-318. https://doi.org/10.1016/S0927-7765(02)00174-1
  3. Balaji, D. S., S. Basavaraja, R. Deshpande, D. B. Mahesh, B. K. Prabhakar, and A. Venkataraman. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B 68: 88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022
  4. Brause, R., H. Moeltgen, and K. Kleinermanns. 2002. Characterization of laser ablated and chemically reduced silver colloids in aqueous solution by UV/Vis spectroscopy and STM/SEM microscopy. Appl. Phys. 75: 711-716. https://doi.org/10.1007/s00340-002-1024-3
  5. Chau, C. F., S. H. Wu, and G. C. Yen. 2007. The development of regulations for food nanotechnology. Trends Food Sci. Technol. 18: 269-280. https://doi.org/10.1016/j.tifs.2007.01.007
  6. Cummins, C. S. and H. Harris. 1958. Studies on the cell wall composition and taxonomy of Actinomycetales and related groups. J. Gen. Microbiol. 18: 173-189. https://doi.org/10.1099/00221287-18-1-173
  7. Dickson, D. P. E. 1999. Nanostructured magnetism in living systems. J. Magn. Mater. 203: 46-49. https://doi.org/10.1016/S0304-8853(99)00178-X
  8. Feng, Q. L., U. Wa, G. Q. Chen, K. Z. Cui, T. M. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Biomed. Mater. Res. 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  9. Hemanth Naveen, K. S., Gaurav Kumar, L. Karthik, and K. V. Bhaskara Rao. 2010. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res. 2: 161-167.
  10. Hong, B., J. Kai, Y. Ren, J. Han, J. Zou, C. H. Ahn, and K. A. Kang. 2008. Highly sensitive, rapid, reliable and automatic, cardiovascular disease diagnosis with Nanoparticle Fluorescence enhancer and mems. Adv. Exp. Med. Biol. 614: 265-273.
  11. Kalimuthu, K., R. Suresh Babu, D. Venkataraman, B. Mohd, and S. Gurunathan. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B 65: 150-153. https://doi.org/10.1016/j.colsurfb.2008.02.018
  12. Kasthuri, J., S. Veerapandian, and N. Rajendiran. 2009. Biological and synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B 68: 55-60. https://doi.org/10.1016/j.colsurfb.2008.09.021
  13. Khosravi-Darani, K. 2010. Research activities on supercritical fluid science in biotechnology. Crit. Rev. Food Sci. Nutr. 50: 479-488. https://doi.org/10.1080/10408390802248759
  14. Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, and H. J. Lee. 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3: 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  15. Klaus, T., R. Joerger, E. Olsson, and C. G. Granquist. 1999. Silver based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96: 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
  16. Lengke, F. M., E. M. Fleet, and G. Southam. 2007. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23: 2694-2699. https://doi.org/10.1021/la0613124
  17. Martinez-Castanon, G. A., N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martínez-Mendoza, and F. Ruiz. 2008. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 10: 1343-1348. https://doi.org/10.1007/s11051-008-9428-6
  18. Mie, G. 1908. Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys. 25: 377-445.
  19. Milligan, J. and F. M. M. Morel. 2002. A proton buffering role for silica in diatoms. Science 297: 1848-1850. https://doi.org/10.1126/science.1074958
  20. Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, et al. 2001. Bioreduction of $AuCI_4$ - ions by the fungus, Verticillium sp., and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. Engl. 1: 3585-3588.
  21. Nair, B. and T. Pradeep. 2002. Coalescence of nanoclusters and formation of sub-micron crystallites assisted by Lactobacillus strains. Cryst. Growth Design 2: 295-298.
  22. Narayanan, K. B. and N. Sakthivel. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156: 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  23. Natarajan, K., S. Selvaraj, and V. Ramachandra Murthy. 2010. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostruct. 5: 135-140.
  24. Krumov, N., I. Perner-Nochta, S. Oder, V. Gotcheva, A. Angelov, and C. Posten. 2009. Production of inorganic nanoparticles by microorganisms. Chem. Eng. Technol. 32: 1026-1035. https://doi.org/10.1002/ceat.200900046
  25. Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720. https://doi.org/10.1128/AEM.02218-06
  26. Pum, D. and U. B. Sleytr. 1999. The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol. 17: 8-12. https://doi.org/10.1016/S0167-7799(98)01221-9
  27. Sadowski, Z., I. Maliszewska, I. Polowczyk, T. Kozlecki, and B. Grochowalska. 2008. Biosynthesis of colloidal silver particles using microorganisms. Polish J. Chem. 82: 377-382.
  28. Saifuddin, N., W. C. Wang, and A. A. Nur Yasumira. 2009. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E J. Chem. 6: 61-70. https://doi.org/10.1155/2009/734264
  29. Sanghi, R. and P. Verma. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Biores. Technol. 100: 501-504. https://doi.org/10.1016/j.biortech.2008.05.048
  30. Sastry, M., A. Ahmad, I. M. Khan, and R. Kumar. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162-170.
  31. Shaligram, S. N., M. Bule, R. Bhambure, S. R. Singhal, K. S. Singh, G. Szakacs, and A. Pandey. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungi. Process Biochem. 44: 939-943. https://doi.org/10.1016/j.procbio.2009.04.009
  32. Shirley, A. Dayanad, B. Sreedhar, and S. G. Dastager. 2010. Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig. J. Nanomater. Biostruc. 5: 447-451.
  33. Sosa, I. O., C. Noguez, and R. G. Barrera. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. 107: 6269-6275.
  34. Srinivasulu, B., R. S. Prakasham, A. Jetty, S. Srinivas, P. Ellaiah, and S. V. Ramakrishna. 2002. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 38: 593-598. https://doi.org/10.1016/S0032-9592(02)00182-6
  35. Vigneshwaran, N., N. Arati Kathe, P. V. Varadarajan, P. Rajan Nachane, and R. H. Balasubramanya. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B Interfaces 53: 55-59. https://doi.org/10.1016/j.colsurfb.2006.07.014
  36. Wang, P. 2006. Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17: 574-579. https://doi.org/10.1016/j.copbio.2006.10.009
  37. Yamanaka, M., K. Hara, and J. Kudo. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71: 7589-7593. https://doi.org/10.1128/AEM.71.11.7589-7593.2005
  38. Zhang, L., F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad. 2008. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 83: 761-769. https://doi.org/10.1038/sj.clpt.6100400

Cited by

  1. Biosynthesis and microscopic study of metallic nanoparticles vol.54, pp.None, 2013, https://doi.org/10.1016/j.micron.2013.07.003
  2. Morphological alterations in erythrocytes treated with silver nanoparticles biomineralized by marine sediment-derived Bacillus sp. VITSSN01 vol.64, pp.3, 2012, https://doi.org/10.1007/s13213-013-0773-z
  3. The Use of Bioflocculant and Bioflocculant-ProducingBacillus mojavensisStrain 32A to Synthesize Silver Nanoparticles vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/431089
  4. Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity vol.45, pp.1, 2012, https://doi.org/10.1590/s1517-83822014005000022
  5. Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species vol.37, pp.6, 2014, https://doi.org/10.1007/s00449-013-1070-8
  6. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity vol.98, pp.19, 2012, https://doi.org/10.1007/s00253-014-5953-7
  7. Green Synthesis of Metallic Nanoparticles via Biological Entities vol.8, pp.11, 2012, https://doi.org/10.3390/ma8115377
  8. Exploration on green synthesis of gold nanoparticles by a marine‐derived fungus Aspergillus sydowii vol.34, pp.1, 2012, https://doi.org/10.1002/ep.11949
  9. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments vol.71, pp.2, 2016, https://doi.org/10.1007/s00248-015-0654-z
  10. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activit vol.205, pp.5, 2012, https://doi.org/10.1007/s00430-016-0462-1
  11. Diversity of Silver Nanoparticle Synthesizing Actinobacteria Isolated from Marine Soil, Tamil Nadu, India vol.41, pp.1, 2012, https://doi.org/10.1007/s13369-015-1782-y
  12. Biosynthesis and antibacterial activity of gold nanoparticles coated with reductase enzymes vol.11, pp.9, 2012, https://doi.org/10.1049/mnl.2016.0065
  13. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles vol.42, pp.6, 2012, https://doi.org/10.3109/1040841x.2015.1137860
  14. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi‐causing superficial mycoses in humans vol.59, pp.3, 2012, https://doi.org/10.1111/myc.12445
  15. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities vol.56, pp.5, 2012, https://doi.org/10.1002/jobm.201500516
  16. Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies vol.27, pp.4, 2012, https://doi.org/10.4014/jmb.1610.10019
  17. Biosynthesis of Silver Nanoparticles by Streptomyces griseorubens isolated from Soil and Their Antioxidant Activity vol.11, pp.3, 2012, https://doi.org/10.1049/iet-nbt.2015.0127
  18. Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria vol.11, pp.3, 2012, https://doi.org/10.1049/iet-nbt.2016.0112
  19. Marinobacter lipolyticus from Red Sea for lipase production and modulation of silver nanomaterials for anti-candidal activities vol.11, pp.4, 2017, https://doi.org/10.1049/iet-nbt.2016.0104
  20. Extracellular biogenic synthesis of silver nanoparticles by Actinomycetes from amazonic biome and its antimicrobial efficiency vol.16, pp.43, 2017, https://doi.org/10.5897/ajb2017.16148
  21. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain vol.34, pp.2, 2012, https://doi.org/10.1007/s11274-017-2406-3
  22. Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics vol.124, pp.6, 2012, https://doi.org/10.1111/jam.13723
  23. Antibacterial Silver Nanomaterial Synthesis From Mesoflavibacter zeaxanthinifaciens and Targeting Biofilm Formation vol.10, pp.None, 2012, https://doi.org/10.3389/fphar.2019.00801
  24. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity vol.9, pp.5, 2019, https://doi.org/10.1039/c8ra08982e
  25. Bacteria and nanosilver: the quest for optimal production vol.39, pp.2, 2019, https://doi.org/10.1080/07388551.2018.1555130
  26. Mechanistic removal of environmental contaminants using biogenic nano-materials vol.16, pp.11, 2012, https://doi.org/10.1007/s13762-019-02468-3
  27. Application of silver nanoparticles in food packages: a review vol.39, pp.4, 2012, https://doi.org/10.1590/fst.36318
  28. Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8816111
  29. Bacterial biosynthesis of nanosilver: a green catalyst for the synthesis of (amino pyrazolo)-(phenyl)methyl naphth-2-ol derivatives and their antimicrobial potential vol.44, pp.30, 2012, https://doi.org/10.1039/d0nj01924k
  30. Microbes induced biofabrication of nanoparticles: a review vol.50, pp.10, 2020, https://doi.org/10.1080/24701556.2020.1731539
  31. Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/5985377
  32. Antibacterial, Antifungal and Antibiofilm Activities of Silver Nanoparticles Supported by Crude Bioactive Metabolites of Bionanofactories Isolated from Lake Mariout vol.26, pp.10, 2012, https://doi.org/10.3390/molecules26103027
  33. Biosynthesis of Silver Nanoparticles and Their Applications in Harvesting Sunlight for Solar Thermal Generation vol.11, pp.9, 2021, https://doi.org/10.3390/nano11092421
  34. Biosynthesis of silver nanoparticles by Nocardiopsis sp.‐MW279108 and its antimicrobial activity vol.61, pp.11, 2012, https://doi.org/10.1002/jobm.202100248
  35. Study of Antibacterial and Anticancer Properties of bioAgNPs Synthesized Using Streptomyces sp. PBD-311B and the Application of bioAgNP-CNC/Alg as an Antibacterial Hydrogel Film against P. aeruginosa vol.26, pp.21, 2012, https://doi.org/10.3390/molecules26216414
  36. Statistical modeling of methylene blue degradation by yeast-bacteria consortium; optimization via agro-industrial waste, immobilization and application in real effluents vol.20, pp.1, 2012, https://doi.org/10.1186/s12934-021-01730-z
  37. Biosynthesis and Characterization of Extracellular Silver Nanoparticles from Streptomyces aizuneusis: Antimicrobial, Anti Larval, and Anticancer Activities vol.27, pp.1, 2012, https://doi.org/10.3390/molecules27010212