DOI QR코드

DOI QR Code

Hexavalent Chromium Reduction by Bacteria from Tannery Effluent

  • Batool, Rida (Department of Microbiology and Molecular Genetics, University of the Punjab) ;
  • Yrjala, Kim (MEM-group, Department of Biosciences, University of Helsinki) ;
  • Hasnain, Shahida (Department of Microbiology and Molecular Genetics, University of the Punjab)
  • Received : 2011.08.10
  • Accepted : 2011.12.09
  • Published : 2012.04.28

Abstract

Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.

Keywords

References

  1. Ackerley, D. F., Y. Barak, S. V. Lynch, J. Curtin, and A. Matin. 2006. Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188: 3371-3381. https://doi.org/10.1128/JB.188.9.3371-3381.2006
  2. Ahmed, N., F. Fasim, M. Arif, and N. Jamil. 2000. Inducible tolerance to heavy metals in airborne bacteria. Pak. J. Biol. Sci. 3: 2232-2237. https://doi.org/10.3923/pjbs.2000.2232.2237
  3. American Public Health Association, American Water Works Association, Water Pollution Control Federation. 1995. Standard Methods for the Examination of Water and Wastewater.
  4. Aravindhan, R., K. J. Sreeram, J. R. Rao, and B. U. Nair. 2007. Biological removal of carcinogenic chromium (VI) using mixed Pseudomonas strains. J. Gen. Appl. Microbiol. 53: 71-79. https://doi.org/10.2323/jgam.53.71
  5. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids. Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  6. Baladi, F., A. M. Vaughan, and G. J. Olson. 1990. Chromium (VI) resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Appl. Environ. Microbiol. 56: 913-918.
  7. Camargo, F. A. O., F. M. Bento, B. C. Okeke, and W. T. Frankenberger. 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. 32: 1228-1233. https://doi.org/10.2134/jeq2003.1228
  8. Chourey, K., W. Wei, X. F. Wan, and D. K. Thompson. 2008. Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1under chromate challenge. BMC Genomics 9: 395. https://doi.org/10.1186/1471-2164-9-395
  9. Clesceri, L. A., E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, pp 1325. 20th Ed. American Public Health Association, Washington.
  10. Daulton, T. L., B. J. Little, J. Jones-Meehan, D. A. Blom, and L. F. Allard. 2007. Microbial reduction of chromium from the hexavalent to divalent state. Geochim. Cosmochim. Acta 71: 556-565. https://doi.org/10.1016/j.gca.2006.10.007
  11. Dermou, E., A. Velissariou, D. Xenos, and D. Vayenas. 2005. Biological chromium (VI) reduction using a trickling filter. J. Haz. Mat. 126: 78-85. https://doi.org/10.1016/j.jhazmat.2005.06.008
  12. Desai, C., K. Jain, and D. Madamwar. 2008. Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour. Technol. 99: 6059-6069. https://doi.org/10.1016/j.biortech.2007.12.046
  13. Faisal, M. and S. Hasnain. 2004. Comparative study of Cr(VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp. Biotechnol. Lett. 26: 1623-1628. https://doi.org/10.1007/s10529-004-3184-1
  14. Faisal, M., A. Hameed, and S. Hasnain. 2005. Chromium resistant bacteria and cyanobacteria: Impact on Cr(VI) reduction potential and plant growth. J. Ind. Microbiol. Biotechnol. 32: 615-621. https://doi.org/10.1007/s10295-005-0241-2
  15. Fiol, N., C. Escudero, and I. Villaescusa. 2008. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresour. Technol. 99: 5030-5036. https://doi.org/10.1016/j.biortech.2007.09.007
  16. Francisco, R., A. Moreno, and P. V. Morais. 2010. Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1. Biometals. 23: 713-725. https://doi.org/10.1007/s10534-010-9338-9
  17. Ganguli, A. and A. K. Tripathi. 2001. Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa isolated from a leather tannery effluent. J. Microbiol. Biotechnol. 11: 355-361.
  18. Humphries, A. C., K. P. Nott, L. D. Hall, and L. E., Macaskie. 2005. Reduction of Cr(VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol. Bioeng. 9: 589-596.
  19. Iftikhar, S., M. Faisal, and S. Hasnain. 2007. Cytosolic reduction of toxic Cr(VI) by indigenous microorganisms. Res. J. Environ. Sci. 1: 77-81. https://doi.org/10.3923/rjes.2007.77.81
  20. Khalil, M., F. Adeeb, S. Hassan, and J. Iqbal. 1991. Annual progress report of EPA research laboratory. Environmental Protection Agency, Hons. Phy. Environment Planning Department, Government of Pakistan.
  21. Kotas, J. and Z. Stasicka. 2000. Chromium occurrence in the environment and method of its speciation. Environ. Poll. 107: 263-283. https://doi.org/10.1016/S0269-7491(99)00168-2
  22. Leive, L. 1965. A non-specific increase in permeability in E. coli produced by EDTA. Proc. Nat. Acad. Sci. USA 53: 745-750. https://doi.org/10.1073/pnas.53.4.745
  23. Li, B., D. Pan. J. Zheng. Y. Cheng. X. Ma, F. Huang, and Z. Lin. 2008. Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24: 9630-9635. https://doi.org/10.1021/la801851h
  24. Lin, Z., Y. Zhu, T. L. Kalabegishvili, N. Y. Tsibakhashvili, and H. Y. Holman. 2006. Effect of chromate action on morphology of basalt-inhabiting bacteria. Mater. Sci. Eng. C 26: 610-612. https://doi.org/10.1016/j.msec.2005.06.058
  25. Liu, Y. G., W. H. Xu, G. M. Zeng, C. F. Tang, and C. F. Li. 2004. Experimental study on reduction by Pseudomonas aeruginosa. J. Environ. Sci. 16: 795-801.
  26. Losi, M. E., C. Amrhein, and W. T. Frankenberger. 1994. Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 36: 91-121.
  27. Lounatmaa, K. 1985. Electron microscopic methods for the study of bacterial surface structures, pp. 243-261. In T. K. Korhonen, E. A. Dawes, and P. H. Makela (eds.). Enterobacterial Surface Antigens: Methods for Molecular Characterization. Elsevier, Amsterdam, The Netherlands.
  28. Martins, A., L. Machado, S. Costa, P. Cerca, G. Spengler, M. Viveiros, and L. Amaral. 2011. Role of calcium in the efflux system of Escherichia coli. Int. J. Antimicrob. Agents 37: 410-414. https://doi.org/10.1016/j.ijantimicag.2011.01.010
  29. McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: W20-W25. https://doi.org/10.1093/nar/gkh435
  30. Michel, C., M. Brugma, C. Aubert, A. Bernadac, and M. Bruschi. 2001. Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 55: 95-100. https://doi.org/10.1007/s002530000467
  31. Ohtake, H. and S. Silver. 1994. Bacterial detoxification of toxic chromate, pp. 403-415. In G. R. Choudhuri (ed.). Biological Degradation and Bioremediation of Toxic Chemicals. Discorides Press, Portland.
  32. Opperman, D. J. and E. van. Heerden. 2007. Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J. Appl. Microbiol. 1907-1913.
  33. Park, C. H., M. Keyhan, B. Wielinga, S. Fendorf, and A. Matin. 2001. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol. 66: 1788-1795.
  34. Peitzsch, N., G. Eberz, and H. D. Nies. 1998. Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64: 453-458.
  35. Philip, L., L. Iyengar, and C. Venkobachar. 1998. Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J. Environ. Eng. 124: 1165-1170. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1165)
  36. Poopal, A. C. and R. S. Laxman. 2008. Hexavalent chromate reduction by immobilized Streptomyces griseus. Biotechnol. Lett. 30: 1005-1010. https://doi.org/10.1007/s10529-008-9662-0
  37. Qadir, A., R. N. Malik, and S. Z. Hussain. 2008. Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environ. Monitor. Assess. 140: 43-59. https://doi.org/10.1007/s10661-007-9846-4
  38. Sarangi, A. and C. Krishnan. 2008. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour. Technol. 99: 4130-4137. https://doi.org/10.1016/j.biortech.2007.08.059
  39. Sultan, S. and S. Hasnain. 2007. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour. Technol. 98: 340-344. https://doi.org/10.1016/j.biortech.2005.12.025
  40. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  41. Thacker, U. and D. Madamwar. 2005. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 21: 891-899. https://doi.org/10.1007/s11274-004-6557-7
  42. Thacker, U., R. Parikh, Y. Shouche, and D. Madamwar. 2007. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour. Technol. 98: 1541-1547. https://doi.org/10.1016/j.biortech.2006.06.011
  43. Ullah, R., R. N. Malik, and A. Qadir. 2009. Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. Afr. J. Environ. Sci. Technol. 3: 429-446.
  44. Viti, C., A. Pace, and L. Giovannetti. 2003. Characterization of Cr(VI) resistant bacteria isolated from chromium contaminated soil by tannery activity. Curr. Microbiol. 46: 1-5. https://doi.org/10.1007/s00284-002-3800-z
  45. Wang, Y. T. and H. Shen. 1995. Bacterial reduction of hexavalent chromium. J. Ind. Microbiol. 14: 159-163. https://doi.org/10.1007/BF01569898
  46. Yang, J., M. He, and G. Wang. 2009. Removal of toxic chromate using free and immobilized Cr(VI) reducing bacterial cells of Intrasporangium sp. Q5-1. World J. Microbiol. Biotechnol. 25: 1579-1587. https://doi.org/10.1007/s11274-009-0047-x
  47. Zhu, W., L. Chai, Z. Ma, Y. Wang, H. Xiao, and K. Zhao. 2008. Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1. Res. Microbiol. 163: 616-623. https://doi.org/10.1016/j.micres.2006.09.008

Cited by

  1. Optimization of Chromate Reduction by Whole Cells of <i>Arthrobacter</i> sp. SUK 1205 Isolated from Metalliferous Chromite Mine Environment vol.2, pp.4, 2012, https://doi.org/10.4236/gm.2012.24012
  2. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups vol.20, pp.4, 2013, https://doi.org/10.1007/s11356-012-1101-z
  3. Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB vol.20, pp.8, 2013, https://doi.org/10.1007/s11356-013-1526-z
  4. Dechlorination of chloroorganics, decolorization, and simultaneous bioremediation of Cr6+ from real tannery effluent employing indigenous Bacillus cereus isolate vol.21, pp.7, 2012, https://doi.org/10.1007/s11356-013-2479-y
  5. Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances vol.59, pp.4, 2012, https://doi.org/10.1007/s12223-014-0304-8
  6. Comparative Study of Cr(VI) Removal byExiguobacteriumsp. in Free and Immobilized Forms vol.18, pp.4, 2012, https://doi.org/10.1080/10889868.2014.938722
  7. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/941341
  8. Study on cellular changes and potential endotrophy of wheat roots due to colonization of Chromium reducing bacteria vol.12, pp.10, 2015, https://doi.org/10.1007/s13762-015-0757-6
  9. Bioreduction of Hexavalent Chromium from Soil Column Leachate byPseudomonas stutzeri vol.19, pp.4, 2012, https://doi.org/10.1080/10889868.2015.1029116
  10. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants vol.100, pp.7, 2012, https://doi.org/10.1007/s00253-016-7364-4
  11. Bioremediation of chromium solutions and chromium containing wastewaters vol.42, pp.4, 2012, https://doi.org/10.3109/1040841x.2014.974501
  12. Isolation and Identification of Chromium (VI)-Resistant Bacteria From Soltan Abad River Sediments (Shiraz-Iran) vol.8, pp.1, 2012, https://doi.org/10.17795/jjhs-33576
  13. Isolation of indigenous Staphylococcus sciuri from chromium-contaminated paddy field and its application for reduction of Cr(VI) in rice plants cultivated in pots vol.21, pp.1, 2017, https://doi.org/10.1080/10889868.2017.1282935
  14. Reduction of Hexavalent Chromium and Detection of Chromate Reductase (ChrR) in Stenotrophomonas maltophilia vol.23, pp.2, 2012, https://doi.org/10.3390/molecules23020406
  15. Effective bioremediation and toxicity assessment of tannery wastewaters treated with indigenous bacteria vol.8, pp.10, 2012, https://doi.org/10.1007/s13205-018-1444-3
  16. Chromate detoxification potential of Staphylococcus sp. isolates from an estuary vol.28, pp.4, 2012, https://doi.org/10.1007/s10646-019-02038-w
  17. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils vol.259, pp.None, 2012, https://doi.org/10.1016/j.jenvman.2019.110051
  18. Successive use of microorganisms to remove chromium from wastewater vol.104, pp.9, 2012, https://doi.org/10.1007/s00253-020-10533-y
  19. Operational Characteristics of Immobilized Ochrobactrum sp. CUST210-1 Biosystem and Immobilized Chromate Reductase Biosystem in Continuously Treating Actual Chromium-Containing Wastewater vol.10, pp.17, 2012, https://doi.org/10.3390/app10175934
  20. Highly Cr(VI)-tolerant Staphylococcus simulans assisting chromate evacuation from tannery effluent vol.10, pp.1, 2012, https://doi.org/10.1515/gps-2021-0027
  21. Removal of Hexavalent Chromium by Aspergillus niger Through Reduction and Accumulation vol.38, pp.1, 2012, https://doi.org/10.1080/01490451.2020.1807659
  22. Hexavalent chromium bioremediation with insight into molecular aspect: an overview vol.25, pp.3, 2012, https://doi.org/10.1080/10889868.2021.1884529
  23. A Bacillus and Lysinibacillus sp. bio-augmented Festuca arundinacea phytoremediation system for the rapid decontamination of chromium influenced soil vol.283, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.131186