DOI QR코드

DOI QR Code

Molecular and Biochemical Characterization of a Novel Intracellular Low-Temperature-Active Xylanase

  • Zhou, Junpei (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Dong, Yanyan (College of Life Sciences, Yunnan Normal University) ;
  • Tang, Xianghua (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Li, Junjun (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Xu, Bo (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Wu, Qian (College of Life Sciences, Yunnan Normal University) ;
  • Gao, Yajie (College of Life Sciences, Yunnan Normal University) ;
  • Pan, Lu (College of Life Sciences, Yunnan Normal University) ;
  • Huang, Zunxi (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
  • Received : 2011.08.03
  • Accepted : 2011.12.07
  • Published : 2012.04.28

Abstract

A 990 bp full-length gene (xynAHJ2) encoding a 329-residue polypeptide (XynAHJ2) with a calculated mass of 38.4 kDa was cloned from Bacillus sp. HJ2 harbored in a saline soil. XynAHJ2 showed no signal peptide, distinct amino acid stretches of glycoside hydrolase (GH) family 10 intracellular endoxylanases, and the highest amino acid sequence identity of 65.3% with the identified GH 10 intracellular mesophilic endoxylanase iM-KRICT PX1-Ps from Paenibacillus sp. HPL-001 (ACJ06666). The recombinant enzyme (rXynAHJ2) was expressed in Escherichia coli and displayed the typical characteristics of low-temperature-active enzyme (exhibiting optimum activity at $35^{\circ}C$, 62% at $20^{\circ}C$, and 38% at $10^{\circ}C$; thermolability at ${\geq}45^{\circ}C$). Compared with the reported GH 10 low-temperature-active endoxylanases, which are all extracellular, rXynAHJ2 showed low amino acid sequence identities (<45%), low homology (different phylogenetic cluster), and difference of structure (decreased amount of total accessible surface area and exposed nonpolar accessible surface area). Compared with the reported GH 10 intracellular endoxylanases, which are all mesophilic and thermophilic, rXynAHJ2 has decreased numbers of arginine residues and salt bridges, and showed resistance to $Ni^{2+}$, $Ca^{2+}$, or EDTA at 10 mM final concentration. The above mechanism of structural adaptation for low-temperature activity of intracellular endoxylanase rXynAHJ2 is different from that of GH 10 extracellular low-temperature-active endoxylanases. This is the first report of the molecular and biochemical characterizations of a novel intracellular low-temperature-active xylanase.

Keywords

References

  1. Bai, Y., J. Wang, Z. Zhang, P. Yang, P. Shi, H. Luo, et al. 2010. A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J. Ind. Microbiol. Biotechnol. 37: 187-194. https://doi.org/10.1007/s10295-009-0662-4
  2. Benkert, P., M. Biasini, and T. Schwede. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350. https://doi.org/10.1093/bioinformatics/btq662
  3. Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chen, C., Q. J. Xie, L. H. Wang, C. Qin, F. Y. Xie, S. Z. Yao, and J. H. Chen. 2011. Experimental platform to study heavy metal ion-enzyme interactions and amperometric inhibitive assay of $Ag^+$ based on solution state and immobilized glucose oxidase. Anal. Chem. 83: 2660-2666. https://doi.org/10.1021/ac1031435
  5. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  6. Connerton, I., N. Cummings, G. W. Harris, P. Debeire, and C. Breton. 1999. A single domain thermophilic xylanase can bind insoluble xylan: Evidence for surface aromatic clusters. Biochim. Biophys. Acta Protein Struct. 1433: 110-121. https://doi.org/10.1016/S0167-4838(99)00151-X
  7. Ferre, F. and P. Clote. 2006. DiANNA 1.1: An extension of the DiANNA Web server for ternary cysteine classification. Nucleic Acids Res. 34: W182-W185. https://doi.org/10.1093/nar/gkl189
  8. Finn, R. D., J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H. R. Hotz, et al. 2008. The Pfam protein families database. Nucleic Acids Res. 36: D281-D288. https://doi.org/10.1093/nar/gkn226
  9. Fontes, C., H. J. Gilbert, G. P. Hazlewood, J. H. Clarke, J. A. M. Prates, V. A. McKie, et al. 2000. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146: 1959-1967. https://doi.org/10.1099/00221287-146-8-1959
  10. Gallardo, O., P. Diaz, and F. I. J. Pastor. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: A new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61: 226-233. https://doi.org/10.1007/s00253-003-1239-1
  11. Gallardo, O., F. I. J. Pastor, J. Polaina, P. Diaz, R. Lysek, P. Vogel, et al. 2010. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J. Biol. Chem. 285: 2721-2733. https://doi.org/10.1074/jbc.M109.064394
  12. Guo, B., X. L. Chen, C. Y. Sun, B. C. Zhou, and Y. Z. Zhang. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-${\beta}$-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115. https://doi.org/10.1007/s00253-009-2056-y
  13. Hou, Y. H., T. H. Wang, H. Long, and H. Y. Zhu. 2006. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea. Acta Biochim. Biophys. Sin. 38: 142-149. https://doi.org/10.1111/j.1745-7270.2006.00135.x
  14. Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14: 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  15. Hung, K. S., S. M. Liu, T. Y. Fang, W. S. Tzou, F. P. Lin, K. H. Sun, and S. J. Tang. 2011. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol. Lett. 1441-1447.
  16. Hwang, I. T., H. K. Lim, H. Y. Song, S. J. Cho, J. S. Chang, and N. J. Park. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnol. Adv. 28: 594-601. https://doi.org/10.1016/j.biotechadv.2010.05.007
  17. Kim, D. Y., M. K. Han, H. W. Oh, K. S. Bae, T. S. Jeong, S. U. Kim, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour. Technol. 101: 8814-8821. https://doi.org/10.1016/j.biortech.2010.06.023
  18. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
  19. Lee, C. C., M. Smith, R. Kibblewhite-Accinelli, T. G. Williams, K. Wagschal, G. H. Robertson, and D. W. S. Wong. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116. https://doi.org/10.1007/s00284-005-4583-9
  20. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  21. Pell, G., E. J. Taylor, T. M. Gloster, J. P. Turkenburg, C. Fontes, L. M. A. Ferreira, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605. https://doi.org/10.1074/jbc.M312278200
  22. Petrescu, I., J. Lamotte-Brasseur, J. P. Chessa, P. Ntarima, M. Claeyssens, B. Devreese, et al. 2000. Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4: 137-144. https://doi.org/10.1007/s007920070028
  23. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605-1612. https://doi.org/10.1002/jcc.20084
  24. Siddiqui, K. S. and R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403-433. https://doi.org/10.1146/annurev.biochem.75.103004.142723
  25. Solomon, V., A. Teplitsky, S. Shulami, G. Zolotnitsky, Y. Shoham, and G. Shoham. 2007. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Acta Crystallogr. D Biol. Crystallogr. 63: 845-859. https://doi.org/10.1107/S0907444907024845
  26. Sudo, M., M. Sakka, T. Kimura, K. Ratanakhanokchai, and K. Sakka. 2010. Characterization of Paenibacillus curdlanolyticus intracellular xylanase Xyn10B encoded by the xyn10B gene. Biosci. Biotechnol. Biochem. 74: 2358-2360. https://doi.org/10.1271/bbb.100555
  27. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  28. Usui, K., T. Suzuki, T. Akisaka, and K. Kawai. 2003. A cytoplasmic xylanase (XynX) of Aeromonas caviae ME-1 is released from the cytoplasm to the periplasm by osmotic downshock. J. Biosci. Bioeng. 95: 488-495. https://doi.org/10.1016/S1389-1723(03)80050-6
  29. Wang, G., H. Luo, Y. Wang, H. Huang, P. Shi, P. Yang, et al. 2011. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: Direct cloning, expression and enzyme characterization. Bioresour. Technol. 102: 3330-3336. https://doi.org/10.1016/j.biortech.2010.11.004
  30. Wang, G., Y. Wang, P. Yang, H. Luo, H. Huang, P. Shi, et al. 2010. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl. Microbiol. Biotechnol. 87: 1383-1393. https://doi.org/10.1007/s00253-010-2564-9
  31. Willard, L., A. Ranjan, H. Y. Zhang, H. Monzavi, R. F. Boyko, B. D. Sykes, and D. S. Wishart. 2003. VADAR: A Web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 31: 3316-3319. https://doi.org/10.1093/nar/gkg565
  32. Wu, J., T. Guan, H. Jiang, X. Zhi, S. Tang, H. Dong, et al. 2009. Diversity of actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 13: 623-632. https://doi.org/10.1007/s00792-009-0245-3
  33. Wu, S., B. Liu, and X. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216. https://doi.org/10.1007/s00253-006-0416-4
  34. Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2010. Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Appl. Biochem. Biotechnol. 160: 1277-1292. https://doi.org/10.1007/s12010-009-8642-8
  35. Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2009. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl. Microbiol. Biotechnol. 85: 323-333. https://doi.org/10.1007/s00253-009-2081-x
  36. Zhou, J. P., P. J. Shi, R. Zhang, H. Q. Huang, K. Meng, P. L. Yang, and B. Yao. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530. https://doi.org/10.1007/s10295-010-0795-5

Cited by

  1. Cold-Active Xylanase Produced by Fungi Associated with Antarctic Marine Sponges vol.172, pp.1, 2012, https://doi.org/10.1007/s12010-013-0551-1
  2. Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil vol.31, pp.5, 2017, https://doi.org/10.1080/13102818.2017.1359667
  3. Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil vol.31, pp.5, 2017, https://doi.org/10.1080/13102818.2017.1359667
  4. Characterization of a novel cold-active xylanase from Luteimonas species vol.34, pp.8, 2012, https://doi.org/10.1007/s11274-018-2505-9
  5. Molecular and Biochemical Characterization of a Bimodular Xylanase From Marinifilaceae Bacterium Strain SPP2 vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01507
  6. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pr vol.12, pp.None, 2012, https://doi.org/10.1186/s13068-019-1389-8