DOI QR코드

DOI QR Code

Cloning, Expression, and Characterization of Endoglucanase Gene egIV from Trichoderma viride AS 3.3711

  • Huang, Xiaomei (Northeast Agricultural University) ;
  • Fan, Jinxia (Northeast Agricultural University) ;
  • Yang, Qian (Department of Life Science and Engineering, Harbin Institute of Technology) ;
  • Chen, Xiuling (Northeast Agricultural University) ;
  • Liu, Zhihua (Northeast Forestry University) ;
  • Wang, Yun (Department of Life Science and Engineering, Harbin Institute of Technology) ;
  • Wang, Daqing (Heilongjiang Province Economical Research Institute of State Farm)
  • Received : 2011.07.25
  • Accepted : 2011.11.16
  • Published : 2012.03.28

Abstract

Endoglucanase gene egIV was cloned from Trichoderma viride AS 3.3711, an important cellulose-producing fungus, by using an RT-PCR protocol. The egIV cDNA is 1,297 bp in length and contains a 1,035 bp open reading frame encoding a 344 amino acid protein with an estimated molecular mass of 35.5 kDa and isoelectronic point (pI) of 5.29. The expression of gene egIV in T. viride AS 3.3711 could be induced by sucrose, corn straw, carboxymethylcellulose (CMC), or microcrystalline cellulose, but especially by CMC. The transcripts of egIV were regulated under these substrates, but the expression level of the egIV gene could be inhibited by glucose and fructose. Three recombinant vectors, pYES2-xegIV, $pYES2M{\alpha}$-egIV, and $pYES2M{\alpha}$-xegIV, were constructed to express the egIV gene in Saccharomyces cerevisiae H158. The CMCase activity of yeast transformants $IpYES2M{\alpha}$-xegIV was higher than that of transformant IpYES2-xegIV or $IpYES2M{\alpha}$-egIV, with the highest activity of 0.13 U/ml at induction for 48 h, illustrating that the modified egIV gene could enhance CMCase activity and that $MF{\alpha}$ signal peptide from S. cerevisiae could regulate exogenous gene expression more effectively in S. cerevisiae. The recombinant EGIV enzyme was stable at pH 3.5 to 7.5 and temperature of $35^{\circ}C$ to $65^{\circ}C$. The optimal reaction condition for EGIV enzyme activity was at the temperature of $55^{\circ}C$, pH of 5.0, 0.75 mM $Ba^{2+}$, and using CMC as substrate. Under these conditions, the highest activity of EGIV enzyme in transformant $IpYES2M{\alpha}$-xegIV was 0.18 U/ml. These properties would provide technical parameters for utilizing cellulose in industrial bioethanol production.

Keywords

References

  1. Adams, A., D. E. Gottschling, C. A. Kaiser, and T. Stearns. 1998. Methods in Yeast Genetics: A Cold Spring Harbor Course Manual. Cold Spring Harbor Laboratory, Press, NY.
  2. Armesilla, A. L., C. F. Thurston, and E. Yague. 1994. CEL1: A novel cellulose binding protein secreted by Agaricus bisporus during growth on crystalline cellulose. FEMS Microbiol. Lett. 116: 293-299. https://doi.org/10.1111/j.1574-6968.1994.tb06718.x
  3. Bauer, S., P. Vasu, S. Persson, A. J. Mort, and C. R. Somerville. 2006. Development and application of a suite of polysaccharidedegrading enzymes for analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 103: 11417-11422. https://doi.org/10.1073/pnas.0604632103
  4. Cai, X. P., J. Zhang, H. Y. Yuan, Z. A. Fang, and Y. Y. Li. 2005. Secretory expression of heterologous protein in Kluyveromyces cicerisporus. Appl. Microbiol. Biotechnol. 67: 364-369. https://doi.org/10.1007/s00253-004-1834-9
  5. Chung, D. K., D. H. Shin, B. W. Kim, J. K. Nam, I. S. Han, and S. W. Nam. 1997. Expression and secretion of Clostridium thermocellum endoglucanase A gene (celA) in different Saccharomyces cerevisiae strains. Biotechnol. Lett. 19: 503-506. https://doi.org/10.1023/A:1018320916579
  6. Eriksson, K. E. and S. G. Hamp. 1978. Regulation of endo-1,4-${\beta}$-glucanase production in Sporotrichum pulverulentum. Eur. J. Biochem. 90: 183-190. https://doi.org/10.1111/j.1432-1033.1978.tb12589.x
  7. Foreman, P. K., D. Brown, L. Dankmeyer, R. Dean, S. Diener, N. S. Dunn-Coleman, et al. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278: 31988-31997. https://doi.org/10.1074/jbc.M304750200
  8. Hoffren, A. M., T. T. Teeri, and O. Teleman. 1995. Molecular dynamics simulation of fungal cellulose-binding domains: Differences in molecular rigidity but a preserved cellulose binding surface. Protein Eng. 8: 443-450. https://doi.org/10.1093/protein/8.5.443
  9. Hollenberg, C. P. and G. Gellissen. 1997. Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8: 554-560. https://doi.org/10.1016/S0958-1669(97)80028-6
  10. Huang, X. M., Q. Yang, Z. H. Liu, J. X. Fan, X. L. Chen, J. Z. Song, and Y. Wang. 2010. Cloning and heterologous expression of a novel endoglucanase gene egVIII from Trichoderma viride in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 162: 103-115. https://doi.org/10.1007/s12010-009-8700-2
  11. Ibarra, D., V. Kopcke, and M. Ek. 2010. Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb. Technol. 47: 355-362. https://doi.org/10.1016/j.enzmictec.2010.07.016
  12. Jabbar, A., M. H. Rashid, M. R. Javed, R. Perveen, and M. A. Malana. 2008. Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition. J. Ind. Microbiol. Biotechnol. 35: 515-524. https://doi.org/10.1007/s10295-008-0310-4
  13. Jagtap, S. and M. Rao. 2005. Purification and properties of a low molecular weight 1,4-[beta]-d-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochem. Biophys. Res. Commun. 329: 111-116. https://doi.org/10.1016/j.bbrc.2005.01.102
  14. Karlsson, J., M. Saloheimo, M. Siika-aho, M. Tenkanen, M. Penttila, and F. Tjerneld. 2001. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur. J. Biochem. 268: 6498-6507. https://doi.org/10.1046/j.0014-2956.2001.02605.x
  15. Koseki, T., Y. Mese, S. Fushinobu, K. Masaki, T. Fujii, K. Ito, et al. 2008. Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl. Microbiol. Biotechnol. 77: 1279-1285. https://doi.org/10.1007/s00253-007-1274-4
  16. Krautwurst, H., S. Bazaes, F. D. González, A. M. Jabalquinto, P. A. Frey, and E. Cardemil. 1998. The strongly conserved lysine 256 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase is essential for phosphoryl transfer. Biochemistry 37: 6295-6302. https://doi.org/10.1021/bi971515e
  17. Kwon, I., K. Ekino, M. Goto, and K. Furukawa. 1999. Heterologous expression and characterization of endoglucanase I (EGI) from Trichoderma viride HK-75. Biosci. Biotechnol. Biochem. 63: 1714-1720. https://doi.org/10.1271/bbb.63.1714
  18. Li, X. H., P. Zhang, M. X. Wang, F. Zhou, F. A. Malik, H. J. Yang, et al. 2010. Expression of Trichoderma viride endoglucanase III in the larvae of silkworm, Bombyx mori L. and characteristic analysis of the recombinant protein. Mol. Biol. Rep. 38: 3897-3902.
  19. Li, X. H., H. J. Yang, B. Roy, E. Y. Park, L. J. Jiang, D. Wang, and Y. G. Miao. 2010. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 165: 190-198. https://doi.org/10.1016/j.micres.2009.04.001
  20. Liu, G., X. Tang, S. L. Tian, X. Deng, and M. Xing. 2006. Improvement of the cellulolytic activity of Trichoderma reesei endoglucanase IV with an additional catalytic domain. World J. Microbiol. Biotechnol. 22: 1301-1305. https://doi.org/10.1007/s11274-006-9176-7
  21. Lynd, L. R., P. J. Weimer, W. H. Van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  22. Markku, S., N. S. Tiina, T. Maija, and P. Merja. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249: 584-591. https://doi.org/10.1111/j.1432-1033.1997.00584.x
  23. Penttila, M. E., L. Andre, P. Lehtovaara, M. Bailey, T. T. Teeri, and J. K. Knowles. 1988. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63: 103-112. https://doi.org/10.1016/0378-1119(88)90549-5
  24. Penttila, M. E., L. Andre, M. Saloheimo, P. Lehtovaara, and J. K. Knowles. 1987. Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3: 175-185. https://doi.org/10.1002/yea.320030305
  25. Qin, Y. Q., X. M. Wei, X. M. Liu, T. H. Wang, and Y. B. Qu. 2008. Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Express. Purif. 58: 162-167. https://doi.org/10.1016/j.pep.2007.09.004
  26. Saha, B. C. 2004. Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem. 39: 1871-1876. https://doi.org/10.1016/j.procbio.2003.09.013
  27. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Sping Harbor Laboratory Press, NY.
  28. Senthilkumar, V. and P. Gunasekaran. 2005. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges. J. Sci. Ind. Res. 64: 845-853.
  29. Sinegani, A. S. and G. Emtiazi. 2006. The relative effects of some elements on the DNS method in cellulase assay. J. Appl. Sci. Environ. Mgt. 10: 93-96.
  30. Song, J. Z., Z. H. Liu, and Q. Yang. 2010. Cloning of two cellobiohydrolase genes from Trichoderma viride and heterogeneous expression in yeast Saccharomyces cerevisiae. Mol. Biol. Rep. 37: 2135-2140. https://doi.org/10.1007/s11033-009-9683-3
  31. Takada, G., T. Kawaguchi, J. Sumitani, and M. Arai. 1998. Expression of Aspergillus aculeatus No. F-50 cellobiohydrolase I (cbhI) and beta-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 62: 1615-1618. https://doi.org/10.1271/bbb.62.1615
  32. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL-X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  33. Van Rensburg, P., W. H. Van Zyl, and I. S. Pretorius. 1997. Over-expression of the Saccharomyces cerevisiae exo-${\beta}$-1,3-glucanase gene together with the Bacillus subtilis endo-${\beta}$-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-${\beta}$-1,4-glucanase gene in yeast. J. Biotechnol. 55: 43-53. https://doi.org/10.1016/S0168-1656(97)00059-X
  34. Verbeke, J., P. Coutinho, H. Mathis, A. Quenot, E. Record, M. Asther, and S. Heiss-Blanquet. 2009. Transcriptional profiling of cellulase and expansin-related genes in a hypercellulolytic Trichoderma reesei. Biotechnol. Lett. 31: 1399-1405. https://doi.org/10.1007/s10529-009-0030-5
  35. Villena, G. K. and M. Gutierrez-Correa. 2006. Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett. Appl. Microbiol. 43: 262-268. https://doi.org/10.1111/j.1472-765X.2006.01960.x
  36. Wymelenberg, A. V., S. Denman, D. Dietrich, J. Bassett, X. Yu, R. Atalla, et al. 2002. Transcript analysis of genes encoding a family 61 endoglucanase and a putative membrane-anchored family 9 glycosyl hydrolase from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 68: 5765-5768. https://doi.org/10.1128/AEM.68.11.5765-5768.2002
  37. Xiao, Z., T. Wang, Y. Qu, and P. Gao. 2001. Cloning and expression of Trichoderma reesei endoglucanase III (EGIII) gene in Saccharomyces cerevasiae. Wei Sheng Wu Xue Bao 41: 391-396.
  38. Zhou, J., Y. H. Wang, J. Chu, Y. P. Zhuang, S. L. Zhang, and P. Yin. 2008. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour. Technol. 99: 6826-6833. https://doi.org/10.1016/j.biortech.2008.01.077
  39. Zhu, H., S. Yao, and S. Wang. 2009. MFalpha signal peptide enhances the expression of cellulase eg1 gene in yeast. Appl. Biochem. Biotechnol. 162: 617-624.

Cited by

  1. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus vol.54, pp.suppl1, 2012, https://doi.org/10.1002/jobm.201300821
  2. Expression and Characteristics of an Endoglucanase from Trichoderma atroviride (TaEGII) in Saccharomyces cerevisiae vol.182, pp.3, 2017, https://doi.org/10.1007/s12010-016-2389-9