References
- Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
- American Public Health Association (APHA). 1989. Standard Methods for the Examination of Water and Wastewater, 17th Ed. American Public Health Association, Washington, DC.
- Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28: 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3
- Burton, E., N. Yakandawala, K. Lovetri, and M. S. Madhyastha. 2007. A microplate spectrofluorometric assay for bacterial biofilms. J. Ind. Microbiol. Biotechnol. 34: 1-4.
- Chiara, B., G. Alessandro, M. Giorgio, R. Mila, T. Elena, and P. Brunella. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235. https://doi.org/10.1128/JB.01450-06
- De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
- De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
- Douglas, S. and T. J. Beveridge. 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26: 79-88. https://doi.org/10.1111/j.1574-6941.1998.tb00494.x
- Edmund, B. 2003. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Ed. 42: 614-641. https://doi.org/10.1002/anie.200390176
- Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
- Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98. https://doi.org/10.1016/j.cemconcomp.2009.01.001
- Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
- Knorre, H. and W. Krumbein. 2000. Bacterial calcification, pp. 25-31. In R. E. Riding and S. M Awramik (eds.). Microbial Sediments. Springer-Verlag, Berlin, Germany.
- Le Metayer-Levrel, G., S. Castanier, G. Orial, J.-F. Loubiere, and J.-P. Perthuisot. 1999. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 126: 25-34. https://doi.org/10.1016/S0037-0738(99)00029-9
- Myszka, K. and K. Czaczyk. 2009. Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr. Microbiol. 58: 541-546. https://doi.org/10.1007/s00284-009-9365-3
- Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S. Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
- Park, S. J., N. Y. Lee, W. J. Kim, and S. Y. Ghim. 2010. Application of bacteria isolated from dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-212.
- Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI Mater. J. 98: 3-9.
- Stepanovic, S., D. Vukovic, I. Dakic, B. Savic, and M. Svabic-Viahovic. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 40: 175-179. https://doi.org/10.1016/S0167-7012(00)00122-6
-
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of
$CaCO_3$ . Soil Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 - Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
- Tiano, P., E. Cantisani, I. Sutherland, and J. M. Paget. 2006. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit. 7: 49-55. https://doi.org/10.1016/j.culher.2005.10.003
- Whitchurch, C. B., T. Tolker-Nielsen, P. C. Ragas, and J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295: 1487. https://doi.org/10.1126/science.295.5559.1487
Cited by
- 미생물 혼합 고로슬래그 모르타르의 강도특성 평가 vol.31, pp.2, 2012, https://doi.org/10.5659/jaik_sc.2015.31.2.21
- Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture vol.38, pp.1, 2018, https://doi.org/10.1080/07388551.2017.1312273
- Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-24730-3
- Biocalcification by Piezotolerant Bacillus sp. NIOTVJ5 Isolated from Deep Sea Sediment and its Influence on the Strength of Concrete Specimens vol.21, pp.2, 2019, https://doi.org/10.1007/s10126-018-9867-8