DOI QR코드

DOI QR Code

Molecular Profiling of Rhizosphere Bacterial Communities Associated with Prosopis juliflora and Parthenium hysterophorus

  • Jothibasu, K. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University) ;
  • Chinnadurai, C. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University) ;
  • Sundaram, S.P. (Department of Agricultural Microbiology, Agricultural College and Research Institute) ;
  • Kumar, K. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University) ;
  • Balachandar, D. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University)
  • Received : 2011.09.14
  • Accepted : 2011.11.02
  • Published : 2012.03.28

Abstract

Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.

Keywords

References

  1. Bagwell, C. E. and C. R. Lovell. 2000. Microdiversity of culturable diazotrophs from the rhizoplanes of the salt marsh grasses Spartina alterniflora and Juncus roemerianus. Microbial Ecol. 39: 128-136. https://doi.org/10.1007/s002480000017
  2. Bagwell, C. E., Y. M. Piceno, A. Ashburne-Lucas, and C. R. Lovell. 1998. Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses Appl. Environ. Microbiol. 64: 4276-4282.
  3. Bais, H. P., S. W. Park, T. L. Weir, R. M. Callaway, and J. M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32. https://doi.org/10.1016/j.tplants.2003.11.008
  4. Bashour, I. I. and A. H. Sayegh. 2007. Methods of Analysis for Soils of Arid and Semi-Arid Regions. Food and Agricultural Organization of United Nations, Rome.
  5. Bhojvaid, P. P., V. R. Timmer, and G. Singh. 1996. Reclaiming sodic soils for wheat production by Prosopis juliflora (Swartz) DC afforestation in India. Agroforestry Systems 34: 139-150. https://doi.org/10.1007/BF00148158
  6. Butler, J. L., M. A. Williams, P. J. Bottomley, and D. D. Myrold. 2003. Microbial community dynamics associated with rhizosphere carbon flow. Appl. Environ. Microbiol. 69: 6793-6800. https://doi.org/10.1128/AEM.69.11.6793-6800.2003
  7. Cardon, Z. G. and D. J. Gage. 2006. Resource exchange in the rhizosphere: Molecular tools and the microbial perspective. Annu. Rev. Ecol. Evol. Syst. 37: 459-488. https://doi.org/10.1146/annurev.ecolsys.37.091305.110207
  8. Chiron, R., H. Marchandin, F. Counil, E. J. Bilak, A. M. Freydiere, G. Bellon, et al. 2005. Clinical and microbiological features of Inquilinus sp. isolates from five patients with cystic fibrosis. J. Clin. Microbiol. 43: 3938-3943. https://doi.org/10.1128/JCM.43.8.3938-3943.2005
  9. Chowdhury, S. P., M. Schmid, A. Hartmann, and A. K. Tripathi. 2009. Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur. J. Soil Biol. 45: 114-122. https://doi.org/10.1016/j.ejsobi.2008.06.005
  10. Cibichakravarthy, B., R. Preetha, S. P. Sundaram, K. Kumar, and D. Balachandar. 2011. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus. World J. Microbiol. Biotechnol. DOI 10.1007/s11274-011-0853-9.
  11. Clarholm, M. 1985. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants, pp. 255-265. In A. H. Fitter (ed.). Ecological Interactions in Soil. Special publication No. 4. British Ecological Society, Blackwell Oxford, UK.
  12. Cocolin, L., M. Manzano, M. Cantoni, and G. Comi. 2001. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl. Environ. Microbiol. 67: 5113-5121. https://doi.org/10.1128/AEM.67.11.5113-5121.2001
  13. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, et al. 2005. The Ribosomal Database Project (RDPII): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-D296.
  14. Daniel, R. 2004. The soil metagenome: A rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204. https://doi.org/10.1016/j.copbio.2004.04.005
  15. Embley, T. M. and E. Stackebrandt. 1996. The use of 16S ribosomal RNA sequences in microbial ecology, pp. 39-62. In R.W. Pickup, and J. R. Saunders (eds.). Molecular Approaches to Environmental Microbiology. Horwood, London.
  16. Felske, A. and A. D. L. Akkermans. 1998. Spatial homogeneity of the most abundant bacterial 16S rRNA molecules in grassland soils. Microbial Ecol. 36: 31-36. https://doi.org/10.1007/s002489900090
  17. Ferrero, M. A., E. Menoyo, M. A. Lugo, M. A. Negritto, M. E. Faríasa, A. M. Antone, and F. Sineriz. 2010. Molecular characterization and in situ detection of bacterial communities associated with rhizosphere soil of high altitude native Poaceae from the Andean Puna region. J. Arid Environ. 74: 1177-1185. https://doi.org/10.1016/j.jaridenv.2010.04.008
  18. Garrity, G. M., J. A. Bell, and T. Lilburn. 2005. Family II. Oxalobacteraceae fam. nov., p. 623. In D. J. Brenner, N. R. Krieg, J. T. Staley, and G. M. Garrity (eds.). Bergey's Manual of Systematic Bacteriology, 2nd Ed., Vol. 2, The Proteobacteria, Part C. Springer, New York.
  19. Glaeser, S. P., P. Kampfer, H. J. Busse, S. Langer, and J. Glaeser. 2009. Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int. J. Syst. Evol. Microbiol. 59: 323-330. https://doi.org/10.1099/ijs.0.65852-0
  20. Gomes, N. C. M., O. Fagbola, R. Costa, N. G. Rumjanek, A. Buchner, L. Mendona-Hagler, and K. Smalla. 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol. 69: 3758-3766. https://doi.org/10.1128/AEM.69.7.3758-3766.2003
  21. Gomes, N. C. M., H. Heuer, J. Schonfeld, R. Costa, L. Mendonca-Hagler, and K. Smalla. 2001. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232: 167-180. https://doi.org/10.1023/A:1010350406708
  22. Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Molec. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  23. Hao, D. C., G. B. Ge, and L. Yang. 2008. Bacterial diversity of Taxus rhizosphere: Culture-independent and culture-dependent approaches. FEMS Microbiol. Lett. 284: 204-212. https://doi.org/10.1111/j.1574-6968.2008.01201.x
  24. Hirsch, P. R., T. H. Mauchline, and I. M. Clark. 2010. Cultureindependent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42: 878-887. https://doi.org/10.1016/j.soilbio.2010.02.019
  25. Hugenholtz, P., B. P. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774.
  26. Kent, A. D. and E. W. Triplett. 2002. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol. 56: 211-236. https://doi.org/10.1146/annurev.micro.56.012302.161120
  27. Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, G. Renella, and F. Valori. 2007. Microbial diversity and microbial activity in the rhizosphere. Ciencia del Suelo (Argentina) 25: 89-97.
  28. Lee, M. S., J. O. Do, M. S. Park, S. Jung, K. H. Lee, K. S. Bae, et al. 2006. Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie Van Leeuwenhoek 90: 19-27. https://doi.org/10.1007/s10482-006-9056-z
  29. Lee, S. H., J. O. Ka, and J. C. Cho. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol. Lett. 285: 263-269. https://doi.org/10.1111/j.1574-6968.2008.01232.x
  30. Lynch, J. M. 1990. The Rhizosphere. Wiley Inter Science, Chichester, UK.
  31. Marschner, P., G. Neumann, A. Kania, L. Weiskopf, and R. Lieberei. 2002. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246: 167-174. https://doi.org/10.1023/A:1020663909890
  32. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327. https://doi.org/10.1016/S1369-5274(99)80056-3
  33. Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural communities. Curr. Opin. Microbiol. 2: 317-322 https://doi.org/10.1016/S1369-5274(99)80055-1
  34. Navarro-Noya, Y. E., J. Janet Jan-Roblero, M. C. Gonzalez-Chavez, R. Hernandez-Gama, and C. Cesar Hernandez-Rodriguez. 2010. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Antonie Van Leeuwenhoek 97: 335-349. https://doi.org/10.1007/s10482-010-9413-9
  35. Nicol, G. W., L. A. Glover, and J. I. Prosser. 2003. Spatial analysis of archaeal community structure in grassland soil. Appl. Environ. Microbiol. 69: 7420-7429. https://doi.org/10.1128/AEM.69.12.7420-7429.2003
  36. O'Sullivan, L. A., K. E. Fuller, E. M. Thomas, C. M. Turley, J. C. Fry, and A. J. Weightman. 2004. Distribution and culturability of the uncultivated 'AGG58 cluster' of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol. Ecol. 47: 359-370. https://doi.org/10.1016/S0168-6496(03)00300-3
  37. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 730-740.
  38. Pandey, D. K., L. M. S. Palni, and S. C. Joshi. 2003. Growth, reproduction, and photosynthesis of ragweed parthenium (Parthenium hysterophorus). Weed Sci. 51: 191-201. https://doi.org/10.1614/0043-1745(2003)051[0191:GRAPOR]2.0.CO;2
  39. Penn, K., D. Wu, J. A. Eisen, and N. Ward. 2006. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl. Environ. Microbiol. 72: 1680-1683. https://doi.org/10.1128/AEM.72.2.1680-1683.2006
  40. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  41. Sambrook, J. and D. W. Russel. 2000. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  42. Singh, B. K., P. Millard, A. S. Whiteley, and J. C. Murrell. 2004. Unraveling rhizosphere-microbial interactions: Opportunities and limitations. Trends Microbiol. 12: 386-393. https://doi.org/10.1016/j.tim.2004.06.008
  43. Skinner, F. A., P. C. T. Jones, and J. E. Mollison. 1952. A comparison of direct- and a plate count technique for quantitative estimation of soil microorganisms. J. Gen. Microbiol. 6: 261-271. https://doi.org/10.1099/00221287-6-3-4-261
  44. Suzuki, T., M. S. Rappe, and S. J. Giovannoni. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64: 4522-4529.
  45. Tamura, K., J. Dudley, M. Nei, and K. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  46. Towers, G. H. N., J. C. Mitchell, E. Rodriguez, F. D. Bennett, and P. V. Subbarao. 1977. Biology and chemistry of Parthenium hysterophorus L., a problem weed in India. J. Sci. Ind. Res. 36: 672-684.
  47. Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74. https://doi.org/10.1126/science.1093857
  48. Weaver, R. W., S. Angle, P. Bottomley, D. Bezdick, S. Smith, A. Tabatabai, and A. Wollum. 1994. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Madison, Wisconsin, USA.
  49. Yoon, J. H., S. J. Kang, W. T. Im, S. T. Lee, and T. K. Oh. 2008. Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int. J. Syst. Evol. Microbiol. 58: 2224-2228. https://doi.org/10.1099/ijs.0.65291-0
  50. Zhang, H., Y. Sekiguch, S. Hanada, P. Hugenholtz, H. Kim, Y. Kamagata, and K. Nakamura. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphateaccumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 53: 1155-1163 https://doi.org/10.1099/ijs.0.02520-0
  51. Zhou, J., B. Xia, D. S. Treves, L. Y. Wu, T. L. Marsh, R. V. O'Neill, et al. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68: 326-334. https://doi.org/10.1128/AEM.68.1.326-334.2002

Cited by

  1. Effect of Rhizosphere on Sediment Microbial Numbers in Phytoremediation Process of Decabromodiphenyl Ether Contaminated Sediment vol.170, pp.None, 2018, https://doi.org/10.1088/1755-1315/170/3/032167
  2. Microbial Ecology of Qatar, the Arabian Gulf: Possible Roles of Microorganisms vol.8, pp.None, 2021, https://doi.org/10.3389/fmars.2021.697269
  3. Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review vol.13, pp.23, 2021, https://doi.org/10.3390/su132313081