DOI QR코드

DOI QR Code

Changes in the Activities of Enzymes Involved in the Degradation of Butylbenzyl Phthalate by Pleurotus ostreatus

  • Hwang, Soon-Seok (Department of Biological Sciences, Kangwon National University) ;
  • Kim, Hyoun-Young (Jeonbuk LED Fusion Technology Center, Chonbuk National University) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2011.07.25
  • Accepted : 2011.10.18
  • Published : 2012.02.28

Abstract

Degradation of butylbenzyl phthalate (BBP) by the white rot fungus Pleurotus ostreatus and the activities of some degrading enzymes were examined in two different media containing 100 mg/l of the compound. P. ostreatus pre-grown for 7 days in complex YMG medium was able to completely degrade BBP within an additional 24 h but degraded only 35 mg/l of BBP in 5 days of incubation in minimal medium. Fungal cell mass in the culture in YMG medium was higher in the presence than in the absence of BBP. The esterase activity of the fungal culture in YMG medium was higher than that in minimal medium and increased with the addition of BBP. On the contrary, laccase activity was higher in minimal medium and it did not increase upon the addition of BBP. General peroxidase activity increased for a few days after the addition of BBP to both media. The degradation of BBP and its metabolites by P. ostreatus thus may be attributed mostly to esterase rather than lignin-degrading laccase. In addition, the activities of the enzymes involved in BBP degradation and their changes varied significantly in the different media and culture conditions.

Keywords

References

  1. Bezalel, L., Y. Hadar, P. Fu, J. Freeman, and C. Cerniglia. 1997. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62: 2547-2553.
  2. Blum, D., X.-L. Li, H. Chen, and L. Ljungdahl. 1999. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl. Environ. Microbiol. 65: 3990-3995.
  3. Cabana, H., J. Jiwan, R. Rozenberg, V. Elisashvili, M. Penninckx, S. Agathos, and J. Jones. 2007. Elimination of endocrinedisrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67: 770-778. https://doi.org/10.1016/j.chemosphere.2006.10.037
  4. Cabana, H., C. Alexander, S. Agathos, and J. Jones. 2009. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour. Technol. 100: 3447-3458. https://doi.org/10.1016/j.biortech.2009.02.052
  5. Chang, B., T. Wang, and S. Yuan. 2007. Biodegradation of four phthalate esters in sludge. Chemosphere 69: 1116-1123. https://doi.org/10.1016/j.chemosphere.2007.04.011
  6. Chatterjee, S. and T. Dutta. 2008. Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: Role of individual isolates in the assimilation pathway. Chemosphere 70: 933-941. https://doi.org/10.1016/j.chemosphere.2007.06.058
  7. Davies, K., I. Lorono, S. Foster, D. Li, K. Johnstone, and A. Ashby. 2000. Evidence for a role of cutinase in pathogenicity of Pyrenopeziza brassicae on brassicas. Physiol. Mol. Plant Pathol. 57: 63-75. https://doi.org/10.1006/pmpp.2000.0282
  8. Hwang, S.-S., H. Choi, and H.-G. Song. 2008. Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus. J. Microbiol. Biotechnol. 18: 767-772.
  9. Heinzkill, M., L. Bech, T. Halkier, P. Schneider, and T. Anke. 1998. Characterization of laccases and peroxidases from woodrotting fungi (family Coprinaceae). Appl. Environ. Microbiol. 64: 1601-1606.
  10. Kim, H.-Y. and H.-G. Song. 2000. Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr. Microbiol. 41: 317-320. https://doi.org/10.1007/s002840010142
  11. Lee, S.-M., B.-W. Koo, S.-S. Lee, M.-K. Kim, D.-H. Choi, E.-J. Hong, et al. 2004. Biodegradation of dibutylphthalate by white rot fungi and evaluation on its estrogenic activity. Enzyme Microb. Technol. 35: 417-423. https://doi.org/10.1016/j.enzmictec.2004.06.001
  12. Maeda, A., T. Mizuno, M. Bunya, S. Sugihara, D. Nakayama, S. Tsunasawa, et al. 2008. Characterization of novel cholesterol esterase from Trichoderma sp. AS59 with high ability to synthesize steryl esters. J. Biosci. Bioeng. 105: 341-349. https://doi.org/10.1263/jbb.105.341
  13. Niazi, J., D. Prasad, and T. Karegoudar. 2001. Initial degradation of dimethyl phthalate by esterases from Bacillus species. FEMS Microbiol. Lett. 196: 201-205. https://doi.org/10.1111/j.1574-6968.2001.tb10565.x
  14. Rodriguez, E., O. Nuero, F. Guillen, A. Martinez, and M. Martinez. 2004. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: The role of laccase and versatile peroxidase. Soil Biol. Biochem. 36: 909-916. https://doi.org/10.1016/j.soilbio.2004.02.005
  15. Stals, I., K. Sandra, S. Geysens, R. Contreras, J. Van Beeumen, and M. Claeyssens. 2004. Factors influencing glycosylation of Trichoderma reesei cellulases I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14: 713-724. https://doi.org/10.1093/glycob/cwh080
  16. Svobodova, K., M. Senholdt, . Novotny, and A. Rehorek. 2007. Mechanism of Reactive Orange 16 degradation with the white rot fungus Irpex lacteus. Process Biochem. 42: 1279-1284. https://doi.org/10.1016/j.procbio.2007.06.002
  17. Syros, T., T. Yupsanis, M. Omirou, and A. Economou. 2004. Photosynthetic response and peroxidases in relation to water and nutrient deficiency in Gerbera. Environ. Exp. Botany 52: 23-31. https://doi.org/10.1016/j.envexpbot.2004.01.007
  18. Tanaka, T., K. Yamada, T. Konishi, H. Goto, and M. Taniguchi. 2000. Enzymatic degradation of alkylphenols, bisphenol A, synthetic estrogen and phthalic ester. Water Sci. Technol. 42: 89-95.
  19. Tapia, J. and R. Vicuna. 1995. Synthetic lignin mineralization by Ceriporiopsis subvermispora is inhibited by an increase in the pH of the cultures resulting from fungal growth. Appl. Environ. Microbiol. 61: 2476-2481.
  20. Tien, K. and T. Kirk. 1988. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161: 238-249.
  21. Tsutsumi, Y., T. Haneda, and T. Nishida. 2001. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42: 271-276. https://doi.org/10.1016/S0045-6535(00)00081-3
  22. Vega, D. and J. Bastide. 2003. Dimethylphthalate hydrolysis by specific microbial esterase. Chemoshpere 51: 663-668. https://doi.org/10.1016/S0045-6535(03)00035-3
  23. Wariishi, H., K. Valli, and M. Gold. 1992. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 267: 23688-23695.
  24. Waring, R. and R. Harris. 2005. Endocrine disrupters: A human risk? Mol. Cell. Endocrinol. 244: 2-9. https://doi.org/10.1016/j.mce.2005.02.007
  25. Xu, G., F. Li, and Q. Wang. 2008. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci. Total Environ. 393: 333-340. https://doi.org/10.1016/j.scitotenv.2008.01.001
  26. Xu, X.-R., H.-B. Li, and J.-D. Gu. 2005. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1. Int. Biodeter. Biodegrad 55: 9-15. https://doi.org/10.1016/j.ibiod.2004.05.005
  27. Xu, X.-R., H.-B. Li, J.-D. Gu, and X.-Y. Li. 2007. Kinetics of n-butyl benzyl phthalate degradation by a pure bacterial culture from the mangrove sediment. J. Hazard. Mater. 140: 194-199. https://doi.org/10.1016/j.jhazmat.2006.06.054
  28. Yeo, S., M. Kim, and H. Choi. 2007. Increased expression of laccase by the addition of phthalates in Phlebia tremellosa. FEMS Microbiol. Lett. 278: 72-77.
  29. Zhao, X. and I. Hardin. 2007. HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigments 73: 322-325. https://doi.org/10.1016/j.dyepig.2005.11.014

Cited by

  1. Fungal biodegradation of dibutyl phthalate and toxicity of its breakdown products on the basis of fungal and bacterial growth vol.30, pp.11, 2012, https://doi.org/10.1007/s11274-014-1705-1
  2. Will spent mushroom substrate application affect the dissipation and plant uptake of phthalate esters? vol.18, pp.4, 2012, https://doi.org/10.1007/s11368-017-1876-0
  3. Biotransformation of Phthalate Plasticizers and Bisphenol A by Marine-Derived, Freshwater, and Terrestrial Fungi vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.00317
  4. The composition of poly(vinyl chloride) with polylactide/poly(butylene terephthalate-co-butylene sebacate) and its biodegradation by Phanerochaete chrysosporium vol.157, pp.None, 2021, https://doi.org/10.1016/j.ibiod.2020.105153
  5. Application of Fungus Enzymes in Spent Mushroom Composts from Edible Mushroom Cultivation for Phthalate Removal vol.9, pp.9, 2012, https://doi.org/10.3390/microorganisms9091989
  6. Enhanced esterase activity during the degradation of dibutyl phthalate by Fusarium species in liquid fermentation vol.48, pp.9, 2021, https://doi.org/10.1093/jimb/kuab062