DOI QR코드

DOI QR Code

Association of Colony Morphology with Coenzyme $Q_{10}$ Production and Its Enhancement from Rhizobium radiobacter T6102W by Addition of Isopentenyl Alcohol as a Precursor

  • Seo, Myung-Ji (Fermentation and Functionality Research Group, Korea Food Research Institute) ;
  • Kook, Moo-Chang (Department of Marine Biotechnology, Anyang University) ;
  • Kim, Soon-Ok (Division of Research and Product Development, Union Korea Pharm., Co. Ltd.)
  • Received : 2011.07.13
  • Accepted : 2011.10.24
  • Published : 2012.02.28

Abstract

Rhizobium radiobacter T6102 was morphologically purified by the aniline blue agar plates to give two distinct colonies; white smooth mucoid colony (T6102W) and blue rough colony (T6102B). The coenzyme $Q_{10}$ ($CoQ_{10}$) was produced just by T6102W, showing 2.0 mg/g of $CoQ_{10}$ content, whereas the T6102B did not produce the $CoQ_{10}$. All of the used $CoQ_{10}$ biosynthetic precursors enhanced the $CoQ_{10}$ production by T6102W. Specifically, the supplementation of 0.75 mM isopentenyl alcohol improved the $CoQ_{10}$ concentration (19.9 mg/l) and content (2.4 mg/g) by 42% and 40%, respectively.

Keywords

References

  1. Bule, M. V. and R. S. Singhal. 2009. Use of carrot juice and tomato juice as natural precursors for enhanced production of ubiquinone-10 by Pseudomonas diminuta NCIM 2865. Food Chem. 116: 302-305. https://doi.org/10.1016/j.foodchem.2009.02.050
  2. Choi, J. H., Y. W. Ryu, and J. H. Seo. 2005. Biotechnological production and applications of coenzyme $Q_{10}$. Appl. Microbiol. Biotechnol. 68: 9-15. https://doi.org/10.1007/s00253-005-1946-x
  3. Connor, M. R. and S. Atsumi. 2010. Synthetic biology guides biofuel production. J. Biomed. Biotechnol. 2010: 541698.
  4. Geromel, V., N. Darin, D. Chretien, P. Benit, P. DeLonlay, A. Rotig, et al. 2002. Coenzyme $Q_{10}$ and idebenone in the therapy of respiratory chain diseases: Rationale and comparative benefits. Mol. Genet. Metab. 77: 21-30. https://doi.org/10.1016/S1096-7192(02)00145-2
  5. Ha, S. J., S. Y. Kim, J. H. Seo, H. J. Moon, K. M. Lee, and J. K. Lee. 2007. Controlling the sucrose concentration increases coenzyme $Q_{10}$ production in fed-batch culture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 76: 109-116. https://doi.org/10.1007/s00253-007-0995-8
  6. Hisamatsu, M., I. Ott, A. Amemura, T. Harada, I. Nakanishi, and K. Kimura. 1977. Change in ability of Agrobacterium to produce water-soluble and water-insoluble ${\beta}$-glucans. J. Gen. Microbiol. 103: 375-379. https://doi.org/10.1099/00221287-103-2-375
  7. Kawada, I., K. Uchida, and K. Aida. 1980. Effects of isopentenyl alcohol and its homologues on the ubiquinone production by various microorganisms. Agric. Biol. Chem. 44: 407-411. https://doi.org/10.1271/bbb1961.44.407
  8. Kuratsu, Y., M. Sakurai, H. Hagino, and K. Inuzuka. 1984. Productivity and colony morphology associated with coenzyme $Q_{10}$ production by Agrobacterium species. Agric. Biol. Chem. 48: 1997-2002. https://doi.org/10.1271/bbb1961.48.1997
  9. Lipshutz, B. H., P. Mollard, S. S. Pfeiffer, and W. Chrisman. 2002. A short, highly efficient synthesis of coenzyme $Q_{10}$. J. Am. Chem. Soc. 124: 14282-14283. https://doi.org/10.1021/ja021015v
  10. Petr, K., K. Igor, and D. Vladimir. 1993. Effect of oxygen on ubiquinone-10 production by Paracoccus denitrificans. Biotechnol. Lett. 15: 1001-1002. https://doi.org/10.1007/BF00129925
  11. Sarter, B. 2002. Coenzyme $Q_{10}$ and cardiovascular disease: A review. J. Cardiovasc. Nurs. 16: 9-20.
  12. Seo, M. J., E. M. Im, J. H. Hur, J. Y. Nam, C. G. Hyun, Y. R. Pyun, and S. O. Kim. 2006. Production of coenzyme $Q_{10}$ by recombinant E. coli harboring the decaprenyl diphosphate synthase gene from Sinorhizobium meliloti. J. Microbiol. Biotechnol. 16: 933-938.
  13. Seo, M. J., E. M. Im, J. Y. Nam, and S. O. Kim. 2007. Increase of $CoQ_{10}$ production level by the coexpression of decaprenyl diphosphate synthase and 1-deoxy-D-xylulose 5-phosphate synthase isolated from Rhizobium radiobacter ATCC 4718 in recombinant Escherichia coli. J. Microbiol. Biotechnol. 17: 1045-1048.
  14. Seo, M. J. and S. O. Kim. 2010. Effect of limited oxygen supply on coenzyme $Q_{10}$ production and its relation to limited electron transfer and oxidative stress in Rhizobium radiobacter T6102. J. Microbiol. Biotechnol. 20: 346-349.
  15. Shimizu, N., T. Koyama, and K. Ogura. 1998. Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase. J. Biol. Chem. 273: 19476-19481. https://doi.org/10.1074/jbc.273.31.19476
  16. Wormann, S. B., L. A. Kluijtmans, U. F. H. Engelke, R. A. Wevers, and E. Morava. 2012. The 3-methylglutaconic acidurias: What's new? J. Inherit. Metab. Dis. 35: 13-22. https://doi.org/10.1007/s10545-010-9210-7
  17. Wu, Z., G. Du, and J. Chen. 2003. Effects of nutrient conditions and fed-batch culture on $CaQ_{10}$ production by Rhizobium radiobacter WSH2601. Sheng Wu Gong Cheng Xue Bao 19: 212-216.
  18. Yen, H. W. and C. H. Chiu. 2007. The influences of aerobicdark and aerobic-light cultivation on $CoQ_{10}$ production by Rhodobacter sphaeroides in the submerged fermenter. Enzyme Microb. Technol. 41: 600-604. https://doi.org/10.1016/j.enzmictec.2007.05.005
  19. Yosida, H., Y. Kotani, K. Ochiai, and K. Araki. 1998. Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol. 44: 19-26. https://doi.org/10.2323/jgam.44.19
  20. Zhong, W., W. Wang, Z. Kong, B. Wu, L. Zhong, X. Li, et al. 2011. Coenzyme $Q_{10}$ production directly from precursors by free and gel-entrapped Sphingomonas sp. ZUTE03 in a waterorganic solvent, two-phase conversion system. Appl. Microbiol. Biotechnol. 89: 293-302. https://doi.org/10.1007/s00253-010-2876-9

Cited by

  1. Enhancement of rice vinegar production by modified semi-continuous culture based on analysis of enzymatic kinetic vol.241, pp.4, 2012, https://doi.org/10.1007/s00217-015-2477-z
  2. Integration of heterologous 4-hydroxybenzoic acid transport proteins in Rhodobacter sphaeroides for enhancement of coenzyme Q10production vol.7, pp.28, 2012, https://doi.org/10.1039/c7ra02346d
  3. The Terpene Mini-Path, a New Promising Alternative for Terpenoids Bio-Production vol.12, pp.12, 2012, https://doi.org/10.3390/genes12121974