DOI QR코드

DOI QR Code

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young (Department of Life Science, Sogang University) ;
  • Baek, Jin-Young (Department of Life Science, Sogang University) ;
  • Choi, Hong-Seok (Department of Life Science, Sogang University) ;
  • Chung, In-Sik (Department of Genetic Engineering, Kyung Hee University) ;
  • Shin, Sung-Ho (Department of Life Science, Sogang University) ;
  • Lee, Jung-Ihn (Department of Computer Science and Information, Hanyang Women's University) ;
  • Choi, Jung-Yun (Hazard Substances Analysis Division, Seoul Regional Food and Drug Administration) ;
  • Yang, Jai-Myung (Department of Life Science, Sogang University)
  • Received : 2011.08.18
  • Accepted : 2011.11.23
  • Published : 2012.02.28

Abstract

RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.

Keywords

References

  1. Altmann, F., H. Schwihla, E. Staudacher, J. Glossl, and L. Marz. 1996. Insect cells contain an unusual membrane-bound ${\beta}$- N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J. Biol. Chem. 270: 17344-17349.
  2. Altman, F., E. Staudacher, I. B. H. Wilson, and L. Marz. 1999. Insect cells as host for the expression of recombinant glycoproteins. Glycoconj. J. 16: 109-123. https://doi.org/10.1023/A:1026488408951
  3. Amarzguioui, M. and H. Prydz. 2004. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316: 1050-1058. https://doi.org/10.1016/j.bbrc.2004.02.157
  4. Bernstein, E., A. A. Caudy, S. M. Hammond, and G. J. Hannon. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363-366. https://doi.org/10.1038/35053110
  5. Brummelkamp, T. R., R. Bernards, and R. Agami. 2002. A system for stable expression of short interfering RNAs mammalian cells. Science 296: 550-553. https://doi.org/10.1126/science.1068999
  6. Castanotto, D., H. Li, and J. J. Rossi. 2002. Functional siRNA expression from transfected PCR products. RNA 8: 1454-1460. https://doi.org/10.1017/S1355838202021362
  7. Couzin, J. 2002. Breakthrough of the year. Small RNAs make big splash. Science 306: 1124-1125.
  8. Dahlberg, J. E., E. Lund, and M. L. Birnstiel. 1988. The Genes and Transcription of the Major Small Nuclear RNAs, pp. 38-70. Springer-Verlag KG, Heidelberg, Federal Republic of Germany.
  9. Dykxhoorn, D. and J. Lieberman. 2006. Knocking down disease with siRNAs. Cell 126: 231-235. https://doi.org/10.1016/j.cell.2006.07.007
  10. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans. Nature 391: 806-811. https://doi.org/10.1038/35888
  11. Geiduschenk, E. P. and G. A. Kassavetis. 2001. The RNA polymerase transcription apparatus. J. Mol. Biol. 310: 1-26. https://doi.org/10.1006/jmbi.2001.4732
  12. Geisler, C., J. J. Aumiller, and D. L. Jarvis. 2008. A fused lobes gene encodes the processing of ${\beta}$-N-acetylglucosaminidase in Sf9 cells. J. Biol. Chem. 283: 11330-11339. https://doi.org/10.1074/jbc.M710279200
  13. Geisler, C. and D. L. Jarvis. 2010. Identification of genes encoding N-glycan processing ${\beta}$-N-acetylglucosaminidases in Trichoplusia ni and Bombyx mori: Implications for glycoengineering of baculovirus expression systems. Biotechnol. Prog. 26: 34-44.
  14. Gou, D., N. Jin, and L. Liu. 2003. Gene silencing in mammalian cells by PCR-based short hairpin RNA. FEBS Lett. 548: 113-118. https://doi.org/10.1016/S0014-5793(03)00630-6
  15. Hebert, C. G., J. J. Valdes, and W. E. Bentley. 2009. In vitro and in vivo RNA interference mediated suppression of Tn-caspase-1 for improved recombinant protein production in High Five cell culture with the baculovirus expression vector system. Biotechnol. Bioeng. 104: 390-399. https://doi.org/10.1002/bit.22411
  16. Jarvis, D. L. 2003. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310: 1-7. https://doi.org/10.1016/S0042-6822(03)00120-X
  17. Jason, R. H. and D. L. Jarvis. 2001. Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian ${\beta}1$,4-galactosyltransferase and ${\alpha}$,6-sialyltransferase genes. Glycobiology 11: 1-9. https://doi.org/10.1093/glycob/11.1.1
  18. Jensen, R. C., Y. Wang, S. B. Hardin, and W. E. Stumph. 1998. The proximal sequence element (PSE) plays a major role in establishing the RNA polymerase specificity of Drosophila UsnRNA genes. Nucleic Acids Res. 26: 616-622. https://doi.org/10.1093/nar/26.2.616
  19. Kim, D. H., M. A. Behlke, S. D. Rose, M. S. Chang, S. Choi, and J. J. Rossi. 2005. Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy. Nat. Biotech. 23: 222-226. https://doi.org/10.1038/nbt1051
  20. Kim, E. J., S. F. Kramer, C. G. Hevert, J. J. Valdes, and W. E. Bentley. 2007. Metabolic engineering of the baculovirus expression system via inverse "shortgun" genomic analysis and RNA interference (dsRNA) increases product yield and cell longevity. Biotechnol. Bioeng. 98: 645-654. https://doi.org/10.1002/bit.21353
  21. Kim, Y. K., K. R. Kim, D. G. Kang, S. Y. Jang, Y. H. Kim, and H. J. Cha. 2009. Suppression of ${\beta}$-N-acetylglucosaminidase in the N-glycosylation pathway for complex glycoprotein formation in Drosophila S2 cells. Glycobiology 19: 301-308.
  22. Kost, T. A., J. P. Condreay, and D. L. Jarvis. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotech. 23: 567-575. https://doi.org/10.1038/nbt1095
  23. Kramer, S. F. and W. E. Bentley. 2003. RNA interference as a metabolic engineering tool: Potential for in vivo control of protein expression in an insect larval model. Metab. Eng. 5: 183-190. https://doi.org/10.1016/S1096-7176(03)00027-2
  24. Kulakosky, P. C., M. L. Shuler, and H. A. Wood. 1998. NGlycosylation of a baculovirus expressed recombinant glycoprotein in three insect cell lines. In Vitro Cell Dev. Biol. Anim. 34: 101-108. https://doi.org/10.1007/s11626-998-0091-0
  25. Kunkel, G. R. and D. A. Danzeiser. 1992. Formation of a template committed complex on the promoter of a gene for the U6 small nuclear RNA from the human requires multiple sequence elements, including the distal region. J. Biol. Chem. 267: 14250-14258.
  26. Kunkel, G. R. and T. Pederson. 1988. Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev. 2: 196-204. https://doi.org/10.1101/gad.2.2.196
  27. Lobo, S. M., N. T. Hernandez, R. C. Conaway, and J. W. Conaway. 1994. Transcription of snRNA Genes by RNA Polymerase II and III, pp. 281-313. Raven Press, New York.
  28. Mattaj, I. W., N. A. Dathan, H. D. Parry, P. Carbon, and A. Krol. 1988. Changing the RNA polymerase specificity of U snRNA gene promoters. Cell 55: 435-442. https://doi.org/10.1016/0092-8674(88)90029-3
  29. McNamara-Schroeder, K. J., R. F. Hennessey, G. A. Harding, R. C. Jensen, and W. E. Stumph. 2001. The Drosophila U1 and U6 gene proximal sequence elements act as important determinants of the RNA polymerase specificity of small nuclear RNA gene promoters in vitro and in vivo. J. Biol. Chem. 276: 31786-31792. https://doi.org/10.1074/jbc.M101273200
  30. Miyagishi, M. and K. Taira. 2002. U6 promoter-driven siRNAs with four uridine 3 overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotech. 19: 497-500.
  31. Meister, G. and T. Tuschl. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343-349. https://doi.org/10.1038/nature02873
  32. Montgomery, M. K., S. Xu, and A. Fire. 1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95: 15502- 15507. https://doi.org/10.1073/pnas.95.26.15502
  33. Paddison, P. J. and G. J. Hannon. 2002. RNA interference: The new somatic cell genetics. Cancer Cell 2: 17-23. https://doi.org/10.1016/S1535-6108(02)00092-2
  34. Paule, M. R. and R. J. White. 2000. Transcription by RNA polymerase I and III. Nucleic Acids Res. 28: 1283-1298. https://doi.org/10.1093/nar/28.6.1283
  35. Paul, P. J., P. D. Good, I. Winer, and D. R. Engelke. 2002. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20: 505-508. https://doi.org/10.1038/nbt0502-505
  36. Reynolds, A., D. Leake, Q. Boese, S. Scaringe, W. S. Marshall, and A. Khvorova. 2004. Rational siRNA design for RNA interference. Nat. Biotech. 22: 326-330. https://doi.org/10.1038/nbt936
  37. Scherr, M. and M. Eder. 2007. Gene silencing by small regulatory RNA in mammalian cells. Cell Cycle 64: 444-449.
  38. Schramm, L. and N. Hernandez. 2001. The RNA polymerase III to its target promoters. Genes Dev. 16: 2593-2620.
  39. Siolas, D., C. Lerner, J. L. Burchard, P. S. Insley, P. J. Paddison, G. J. Hannon, and M. A. Cleary. 2005. Synthetic shRNAs as potent RNA triggers. Nat. Biotech. 23: 227-231. https://doi.org/10.1038/nbt1052
  40. Sui, G., C. Soohoo, B. Affarel, F. Gay, Y. Shi, and W. C. Forreser. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99: 6047-6052. https://doi.org/10.1073/pnas.092143499
  41. Tomiya, N., M. J. Betenbaugh, and Y. C. Lee. 2003. Humanization of lepidopteran insect cell produced glycoproteins. Acc. Chem. Res. 36: 613-620. https://doi.org/10.1021/ar020202v
  42. Tomiya, N., S. Narang, Y. C. Lee, and M. J. Betenbaugh. 2004. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj. J. 21: 343-360. https://doi.org/10.1023/B:GLYC.0000046275.28315.87
  43. Varki, A., R. Cummings, J. Fsko, H. Freeze, G. Hart, and J. Marth. 1995. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  44. Wakiyama, M., T. Matsumoto, and S. Yokoyama. 2005. Drosophila U6 promoter-driven short hairpin RNAs effectively induce RNA interference in Schneider 2 cells. Biochem. Biophys. Res. Commun. 331: 1163-1170. https://doi.org/10.1016/j.bbrc.2005.03.240
  45. Watanabe, S., T. Kokuho, H. Takahashi, M. Takahashi, T. Kubota, and S. Inumaru. 2002. Sialyation of N-glycans on the recombinant protein expressed by a baculovirus-insect cell system under ${\beta}$-Nacetylglucosaminidase inhibition. J. Biol. Chem. 277: 5090-5093. https://doi.org/10.1074/jbc.M110548200
  46. Wise, T. G., D. J. Schafer, L. S. Lambeth, S. G. Tyack, M. P. Bruce, R. J. Moore, and T. J. Doran. 2007. Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs. Anim. Biotechnol. 18: 153-162. https://doi.org/10.1080/10495390600867515
  47. Zamore, P. D., T. Tuschl, P. A. Sharp, and D. P. Bartel. 2000. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA 21 to 23 nucleotide intervals. Cell 102: 25-33.
  48. Zamrod, Z., C. M. Tyree, Y. Song, and W. E. Stumph. 1993. In vitro transcription of a Drosophila U1 small nuclear RNA gene requires TATA box-binding protein and two proximal cis-acting elements with stringent spacing requirements. Mol. Cell. Biol. 13: 5918-5927. https://doi.org/10.1128/MCB.13.9.5918

Cited by

  1. Gene silencing of NR2B-containing NMDA receptor by intrathecal injection of short hairpin RNA reduces formalin-induced nociception in C57BL/6 mouse vol.123, pp.9, 2013, https://doi.org/10.3109/00207454.2013.789873
  2. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology vol.10, pp.10, 2012, https://doi.org/10.1021/acschembio.5b00340
  3. Down-Regulation of Cytokinin Oxidase 2 Expression Increases Tiller Number and Improves Rice Yield vol.8, pp.1, 2012, https://doi.org/10.1186/s12284-015-0070-5
  4. Humanizing glycosylation pathways in eukaryotic expression systems vol.33, pp.1, 2012, https://doi.org/10.1007/s11274-016-2172-7
  5. CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus–insect cell system vol.114, pp.34, 2012, https://doi.org/10.1073/pnas.1705836114
  6. Development of a baculovirus vector carrying a small hairpin RNA for suppression of sf-caspase-1 expression and improvement of recombinant protein production vol.18, pp.None, 2012, https://doi.org/10.1186/s12896-018-0434-1
  7. Development of a Dual-Vector System Utilizing MicroRNA Mimics of the Autographa californica miR-1 for an Inducible Knockdown in Insect Cells vol.20, pp.3, 2012, https://doi.org/10.3390/ijms20030533
  8. A novel vector-based RNAi method using mouse U6 promoter-driven shRNA expression in the filamentous fungus Blakeslea trispora vol.43, pp.9, 2012, https://doi.org/10.1007/s10529-021-03155-5