DOI QR코드

DOI QR Code

Creation of an Ethanol-Tolerant Yeast Strain by Genome Reconstruction Based on Chromosome Splitting Technology

  • Park, A-Hwang (Department of Biomaterial Control (BK 21 Program), Dong-Eui University) ;
  • Sugiyama, Minetaka (Department of Biotechnology, Graduate School of Engineering, Osaka University) ;
  • Harashima, Satoshi (Department of Biotechnology, Graduate School of Engineering, Osaka University) ;
  • Kim, Yeon-Hee (Department of Biomaterial Control (BK 21 Program), Dong-Eui University)
  • Received : 2011.09.19
  • Accepted : 2011.11.08
  • Published : 2012.02.28

Abstract

We sought to breed an industrially useful yeast strain, specifically an ethanol-tolerant yeast strain that would be optimal for ethanol production, using a novel breeding method, called genome reconstruction, based on chromosome splitting technology. To induce genome reconstruction, Saccharomyces cerevisiae strain SH6310, which contains 31 chromosomes including 12 artificial mini-chromosomes, was continuously cultivated in YPD medium containing 6% to 10% ethanol for 33 days. The 12 mini-chromosomes can be randomly or specifically lost because they do not contain any genes that are essential under high-level ethanol conditions. The strains selected by inducing genome reconstruction grew about ten times more than SH6310 in 8% ethanol. To determine the effect of mini-chromosome loss on the ethanol tolerance phenotype, PCR and Southern hybridization were performed to detect the remaining mini-chromosomes. These analyses revealed the loss of mini-chromosomes no. 11 and no. 12. Mini-chromosome no. 11 contains ten genes (YKL225W, PAU16, YKL223W, YKL222C, MCH2, FRE2, COS9, SRY1, JEN1, URA1) and no. 12 contains fifteen genes (YHL050C, YKL050W-A, YHL049C, YHL048C-A, COS8, YHLComega1, ARN2, YHL046W-A, PAU13, YHL045W, YHL044W, ECM34, YHL042W, YHL041W, ARN1). We assumed that the loss of these genes resulted in the ethanol-tolerant phenotype and expect that this genome reconstruction method will be a feasible new alternative for strain improvement.

Keywords

References

  1. Alper, H., J. Moxley, E. Nevoigt, G. R. Fink, and G., Stephanopoulos. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568. https://doi.org/10.1126/science.1131969
  2. Birch, R. M. and G. M. Walker. 2000. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb. Technol. 26: 678-687. https://doi.org/10.1016/S0141-0229(00)00159-9
  3. Burke, D., D. Dawson, and T. Stearns. 2000. Methods in Yeast Genetics, pp. 110-111. A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. New York.
  4. Dinh, T. N., K. Nagahisa, K. Yoshikawa, T. Hirasawa, C. Furusawa, and H. Shimizu. 2009. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst. Eng. 32: 681-688. https://doi.org/10.1007/s00449-008-0292-7
  5. Guldener, U., S. Heck, T. Fiedler, J. Beinhauer, and J. H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24: 2519- 2524. https://doi.org/10.1093/nar/24.13.2519
  6. Hu, X. H., M. H. Wang, T. Tan, J. R. Li, H. Yang, L. Leach, R. M. Zhang, and Z. W. Luo. 2007. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175: 1479-1487.
  7. Inoue, T., H. Iefuji, T. Fujii, H. Soga, and K. Satoh. 2000. Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci. Biotechnol. Biochem. 64: 229-236. https://doi.org/10.1271/bbb.64.229
  8. Kubota, S., I. Takeo, K. Kume, M. Kanai, A. Shitamukai, M. Mizunuma, et al. 2004. Effect of ethanol on cell growth of budding yeast: Genes that are important for cell growth in the presence of ethanol. Biosci. Biotechnol. Biochem. 68: 968-972. https://doi.org/10.1271/bbb.68.968
  9. Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, and J. T. Pronk. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
  10. Murakami, K., E. Tao, Y. Ito, M. Sugiyama, Y. Kaneko, S. Harashima, et al. 2007. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl. Microbiol. Biotechnol. 75: 589-597. https://doi.org/10.1007/s00253-007-0859-2
  11. Murray, A. W., N. P. Schultes, and J. W. Szostak. 1986. Chromosome length controls mitotic chromosome segregation in yeast. Cell 45: 529-536. https://doi.org/10.1016/0092-8674(86)90284-9
  12. Sheehan, C. and A. S. Weiss. 1990. Yeast artificial chromosome: Rapid extraction for high resolution analysis. Nucleic Acids Res. 18: 2193. https://doi.org/10.1093/nar/18.8.2193
  13. Shi, D. J., C. L. Wang, and K. M. Wang. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36: 139-147. https://doi.org/10.1007/s10295-008-0481-z
  14. Stanley, G. and B. Hahn-Hagerdal. 2010. Fuel ethanol production from lignocellulosic raw materials using recombinant yeasts. In A. A. vertes, N. Qureshi, H. P. Blaschek, and H. Yukawa (eds.). Biomass to Biofuels: Strategies for Global Industries. Blackwell Publishing Ltd., Oxford, UK.
  15. Sugiyama, M., S. Ikushima, T. Nakazawa, Y. Kaneko, and S. Harashima. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 38: 909-914. https://doi.org/10.2144/05386RR01
  16. Sugiyama, M., K. Yamagishi, Y. H. Kim, Y. Kaneko, M. Nishizawa, and S. Harashima. 2009. Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 84: 1045-1052. https://doi.org/10.1007/s00253-009-2144-z
  17. Surosky, R. T., C. S. Neqlon, and B. K. Tye. 1986. The mitotic stability of deletion derivatives of chromosome III in yeast. Proc. Natl. Acad. Sci. USA 83: 414-418. https://doi.org/10.1073/pnas.83.2.414
  18. Takahashi, T., H. Shimoi, and K. Ito. 2001. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol. Genet. Genomics 265: 1112-1119. https://doi.org/10.1007/s004380100510
  19. Van Voorst, F., J. Houghton-Larsen, L. Jonson, M. C. Kielland- Brandt, and A. Brandt. 2006. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23: 351-359. https://doi.org/10.1002/yea.1359
  20. Widianto, D., E. Yamamoto, M. Sugiyama, Y. Mukai, Y. Kaneko, Y. Oshima, et al. 2003. Creating a Saccharomyces cerevisiae haploid strain having 21 chromosomes. J. Biosci. Bioeng. 95: 89-94. https://doi.org/10.1016/S1389-1723(03)80154-8
  21. Winston, F., C. Dollard, and S. L. Ricupero-Hovasse. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53-55. https://doi.org/10.1002/yea.320110107

Cited by

  1. Quantitative iTRAQ LC–MS/MS Proteomics Reveals Metabolic Responses to Biofuel Ethanol in Cyanobacterial Synechocystis sp. PCC 6803 vol.11, pp.11, 2012, https://doi.org/10.1021/pr300504w
  2. Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network vol.42, pp.15, 2012, https://doi.org/10.1093/nar/gku576
  3. 유전자 상호발현 조절을 통한 에탄올 내성 메커니즘의 규명 vol.26, pp.1, 2012, https://doi.org/10.5352/jls.2016.26.1.17
  4. 효모에서 염색체의 수가 세포성장과 노화에 미치는 영향 vol.26, pp.6, 2012, https://doi.org/10.5352/jls.2016.26.6.646