References
- Alper, H., J. Moxley, E. Nevoigt, G. R. Fink, and G., Stephanopoulos. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568. https://doi.org/10.1126/science.1131969
- Birch, R. M. and G. M. Walker. 2000. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb. Technol. 26: 678-687. https://doi.org/10.1016/S0141-0229(00)00159-9
- Burke, D., D. Dawson, and T. Stearns. 2000. Methods in Yeast Genetics, pp. 110-111. A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. New York.
- Dinh, T. N., K. Nagahisa, K. Yoshikawa, T. Hirasawa, C. Furusawa, and H. Shimizu. 2009. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst. Eng. 32: 681-688. https://doi.org/10.1007/s00449-008-0292-7
- Guldener, U., S. Heck, T. Fiedler, J. Beinhauer, and J. H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24: 2519- 2524. https://doi.org/10.1093/nar/24.13.2519
- Hu, X. H., M. H. Wang, T. Tan, J. R. Li, H. Yang, L. Leach, R. M. Zhang, and Z. W. Luo. 2007. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175: 1479-1487.
- Inoue, T., H. Iefuji, T. Fujii, H. Soga, and K. Satoh. 2000. Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci. Biotechnol. Biochem. 64: 229-236. https://doi.org/10.1271/bbb.64.229
- Kubota, S., I. Takeo, K. Kume, M. Kanai, A. Shitamukai, M. Mizunuma, et al. 2004. Effect of ethanol on cell growth of budding yeast: Genes that are important for cell growth in the presence of ethanol. Biosci. Biotechnol. Biochem. 68: 968-972. https://doi.org/10.1271/bbb.68.968
- Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, and J. T. Pronk. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
- Murakami, K., E. Tao, Y. Ito, M. Sugiyama, Y. Kaneko, S. Harashima, et al. 2007. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl. Microbiol. Biotechnol. 75: 589-597. https://doi.org/10.1007/s00253-007-0859-2
- Murray, A. W., N. P. Schultes, and J. W. Szostak. 1986. Chromosome length controls mitotic chromosome segregation in yeast. Cell 45: 529-536. https://doi.org/10.1016/0092-8674(86)90284-9
- Sheehan, C. and A. S. Weiss. 1990. Yeast artificial chromosome: Rapid extraction for high resolution analysis. Nucleic Acids Res. 18: 2193. https://doi.org/10.1093/nar/18.8.2193
- Shi, D. J., C. L. Wang, and K. M. Wang. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36: 139-147. https://doi.org/10.1007/s10295-008-0481-z
- Stanley, G. and B. Hahn-Hagerdal. 2010. Fuel ethanol production from lignocellulosic raw materials using recombinant yeasts. In A. A. vertes, N. Qureshi, H. P. Blaschek, and H. Yukawa (eds.). Biomass to Biofuels: Strategies for Global Industries. Blackwell Publishing Ltd., Oxford, UK.
- Sugiyama, M., S. Ikushima, T. Nakazawa, Y. Kaneko, and S. Harashima. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 38: 909-914. https://doi.org/10.2144/05386RR01
- Sugiyama, M., K. Yamagishi, Y. H. Kim, Y. Kaneko, M. Nishizawa, and S. Harashima. 2009. Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 84: 1045-1052. https://doi.org/10.1007/s00253-009-2144-z
- Surosky, R. T., C. S. Neqlon, and B. K. Tye. 1986. The mitotic stability of deletion derivatives of chromosome III in yeast. Proc. Natl. Acad. Sci. USA 83: 414-418. https://doi.org/10.1073/pnas.83.2.414
- Takahashi, T., H. Shimoi, and K. Ito. 2001. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol. Genet. Genomics 265: 1112-1119. https://doi.org/10.1007/s004380100510
- Van Voorst, F., J. Houghton-Larsen, L. Jonson, M. C. Kielland- Brandt, and A. Brandt. 2006. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23: 351-359. https://doi.org/10.1002/yea.1359
- Widianto, D., E. Yamamoto, M. Sugiyama, Y. Mukai, Y. Kaneko, Y. Oshima, et al. 2003. Creating a Saccharomyces cerevisiae haploid strain having 21 chromosomes. J. Biosci. Bioeng. 95: 89-94. https://doi.org/10.1016/S1389-1723(03)80154-8
- Winston, F., C. Dollard, and S. L. Ricupero-Hovasse. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53-55. https://doi.org/10.1002/yea.320110107
Cited by
- Quantitative iTRAQ LC–MS/MS Proteomics Reveals Metabolic Responses to Biofuel Ethanol in Cyanobacterial Synechocystis sp. PCC 6803 vol.11, pp.11, 2012, https://doi.org/10.1021/pr300504w
- Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network vol.42, pp.15, 2012, https://doi.org/10.1093/nar/gku576
- 유전자 상호발현 조절을 통한 에탄올 내성 메커니즘의 규명 vol.26, pp.1, 2012, https://doi.org/10.5352/jls.2016.26.1.17
- 효모에서 염색체의 수가 세포성장과 노화에 미치는 영향 vol.26, pp.6, 2012, https://doi.org/10.5352/jls.2016.26.6.646