참고문헌
- Buzzi, N., A. Colicheo, R. Boland, and A. R. de Boland. 2009. MAP kinases in proliferating human colon cancer Caco-2 cells. Mol. Cell. Biochem. 328: 201-208. https://doi.org/10.1007/s11010-009-0090-9
- Cartwright, C. A., W. Eckhart, S. Simon, and P. L. Kaplan. 1987. Cell transformation by pp60c-src mutated in the carboxyterminal regulatory domain. Cell 49: 83-91. https://doi.org/10.1016/0092-8674(87)90758-6
- Dumesic, P. A., F. A. Scholl, D. I. Barragan, and P. A. Khavari. 2009. Erk1/2 MAP kinases are required for epidermal G2/M progression. J. Cell Biol. 185: 409-422. https://doi.org/10.1083/jcb.200804038
- Emerson, L. J., M. R. Holt, M. A. Wheeler, M. Wehnert, M. Parsons, and J. A. Ellis. 2009. Defects in cell spreading and ERK1/2 activation in fibroblasts with lamin A/C mutations. Biochim. Biophys. Acta 1792: 810-821. https://doi.org/10.1016/j.bbadis.2009.05.007
- He, D., S. J. Hagen, C. Pothoulakis, M. Chen, N. D. Medina, M. Warny, and J. T. LaMont. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119: 139-150. https://doi.org/10.1053/gast.2000.8526
- He, D., S. Sougioultzis, S. Hagen, J. Liu, S. Keates, A. C. Keates, C. Pothoulakis, and J. T. Lamont. 2002. Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology 122: 1048-1057. https://doi.org/10.1053/gast.2002.32386
- Ho, J. G., A. Greco, M. Rupnik, and K. K. Ng. 2005. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc. Natl. Acad. Sci. USA 102: 18373- 18378. https://doi.org/10.1073/pnas.0506391102
- Hofmann, F., C. Busch, and K. Aktories. 1998. Chimeric clostridial cytotoxins: Identification of the N-terminal region involved in protein substrate recognition. Infect. Immun. 66: 1076-1081.
- Hofmann, F., C. Busch, U. Prepens, I. Just, and K. Aktories. 1997. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J. Biol. Chem. 272: 11074-11078. https://doi.org/10.1074/jbc.272.17.11074
- Just, I., J. Selzer, M. Wilm, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500-503. https://doi.org/10.1038/375500a0
- Kelly, C. P. and J. T. LaMont. 1998. Clostridium difficile infection. Annu. Rev. Med. 49: 375-390. https://doi.org/10.1146/annurev.med.49.1.375
- Kim, H., S. H. Rhee, E. Kokkotou, X. Na, T. Savidge, M. P. Moyer, C. Pothoulakis, and J. T. LaMont. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245. https://doi.org/10.1074/jbc.M413842200
- Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. Lamont. 2009. Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Exp. Cell Res. 315: 3336-3344. https://doi.org/10.1016/j.yexcr.2009.05.020
- Lyerly, D. M., K. E. Saum, D. K. MacDonald, and T. D. Wilkins. 1985. Effects of Clostridium difficile toxins given intragastrically to animals. Infect. Immun. 47: 349-352.
- Mazharian, A., S. P. Watson, and S. Severin. 2009. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility and proplatelet formation. Exp. Hematol. 37: 1238-1249. https://doi.org/10.1016/j.exphem.2009.07.006
- Mitchell, T. J., J. M. Ketley, S. C. Haslam, J. Stephen, D. W. Burdon, D. C. Candy, and R. Daniel. 1986. Effect of toxin A and B of Clostridium difficile on rabbit ileum and colon. Gut 27: 78-85. https://doi.org/10.1136/gut.27.1.78
- Na, X., H. Kim, M. P. Moyer, C. Pothoulakis, and J. T. LaMont. 2008. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect. Immun. 76: 2862-2871. https://doi.org/10.1128/IAI.00326-08
- Na, X., D. Zhao, H. W. Koon, H. Kim, J. Husmark, M. P. Moyer, C. Pothoulakis, and J. T. LaMont. 2005. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128: 1002-1011. https://doi.org/10.1053/j.gastro.2005.01.053
- Reineke, J., S. Tenzer, M. Rupnik, A. Koschinski, O. Hasselmayer, A. Schrattenholz, H. Schild, and C. von Eichel-Streiber. 2007. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446: 415-419. https://doi.org/10.1038/nature05622
- Triadafilopoulos, G., C. Pothoulakis, M. J. O'Brien, and J. T. LaMont. 1987. Differential effects of Clostridium difficile toxins A and B on rabbit ileum. Gastroenterology 93: 273-279. https://doi.org/10.1016/0016-5085(87)91014-6
- Wang, Z., H. Yang, F. Zhang, Z. Pan, J. Capo-Aponte, and P. S. Reinach. 2009. Suppression of GSK-3 activation prolongs Erk1/2 phosphorylation and augments EGF-induced migration in HCEC. Invest. Ophthalmol Vis. Sci. 50.
- Warny, M., A. C. Keates, S. Keates, I. Castagliuolo, J. K. Zacks, S. Aboudola, et al. 2000. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105: 1147-1156. https://doi.org/10.1172/JCI7545
- Zohrabian, V. M., B. Forzani, Z. Chau, R. Murali, and M. Jhanwar-Uniyal. 2009. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res. 29: 119-123.
피인용 문헌
- Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber vol.37, pp.None, 2012, https://doi.org/10.1016/j.anaerobe.2015.12.007