DOI QR코드

DOI QR Code

Clostridium difficile Toxin A Inhibits the Kinase Activity of Extracellular Signal-Related Kinases 1 and 2 Through Direct Binding

  • Seok, Heon (Department of Biomedical Science, Jungwon University) ;
  • Nam, Hyo-Jung (Department of Life Science, College of Natural Science, Daejin University) ;
  • Nam, Seung-Taek (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kang, Jin-Ku (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kim, Sung-Kuk (Department of Life Science, College of Natural Science, Daejin University) ;
  • Chang, Jong-Soo (Department of Life Science, College of Natural Science, Daejin University) ;
  • Ha, Eun-Mi (College of Pharmacy, Catholic University of Daegu) ;
  • Park, Young-Joo (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Kim, Ho (Department of Life Science, College of Natural Science, Daejin University)
  • Received : 2011.10.25
  • Accepted : 2011.10.27
  • Published : 2012.02.28

Abstract

Clostridium difficile toxin A glucosylates Rho family proteins, resulting in actin filament disaggregation and cell rounding in cultured colonocytes. Given that the cellular toxicity of toxin A is dependent on its receptor binding and subsequent entry into the cell, we herein sought to identify additional colonocyte proteins that might bind to toxin A following its internalization. Our results revealed that toxin A interacted with ERK1 and ERK2 in two human colonocyte cell lines (NCM460 and HT29). A GST-pulldown assay also showed that toxin A can directly bind to ERK1 and ERK2. In NCM460 cells exposed to PMA (an ERK1/2 activator), the phosphorylation of ERK1/2 did not affect the interaction between toxin A and ERK1/2. However, an in vitro kinase assay showed that the direct binding of toxin A to ERK1 or ERK2 inhibited their kinase activities. These results suggest a new molecular mechanism for the cellular toxicity seen in cells exposed to toxin A.

Keywords

References

  1. Buzzi, N., A. Colicheo, R. Boland, and A. R. de Boland. 2009. MAP kinases in proliferating human colon cancer Caco-2 cells. Mol. Cell. Biochem. 328: 201-208. https://doi.org/10.1007/s11010-009-0090-9
  2. Cartwright, C. A., W. Eckhart, S. Simon, and P. L. Kaplan. 1987. Cell transformation by pp60c-src mutated in the carboxyterminal regulatory domain. Cell 49: 83-91. https://doi.org/10.1016/0092-8674(87)90758-6
  3. Dumesic, P. A., F. A. Scholl, D. I. Barragan, and P. A. Khavari. 2009. Erk1/2 MAP kinases are required for epidermal G2/M progression. J. Cell Biol. 185: 409-422. https://doi.org/10.1083/jcb.200804038
  4. Emerson, L. J., M. R. Holt, M. A. Wheeler, M. Wehnert, M. Parsons, and J. A. Ellis. 2009. Defects in cell spreading and ERK1/2 activation in fibroblasts with lamin A/C mutations. Biochim. Biophys. Acta 1792: 810-821. https://doi.org/10.1016/j.bbadis.2009.05.007
  5. He, D., S. J. Hagen, C. Pothoulakis, M. Chen, N. D. Medina, M. Warny, and J. T. LaMont. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119: 139-150. https://doi.org/10.1053/gast.2000.8526
  6. He, D., S. Sougioultzis, S. Hagen, J. Liu, S. Keates, A. C. Keates, C. Pothoulakis, and J. T. Lamont. 2002. Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology 122: 1048-1057. https://doi.org/10.1053/gast.2002.32386
  7. Ho, J. G., A. Greco, M. Rupnik, and K. K. Ng. 2005. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc. Natl. Acad. Sci. USA 102: 18373- 18378. https://doi.org/10.1073/pnas.0506391102
  8. Hofmann, F., C. Busch, and K. Aktories. 1998. Chimeric clostridial cytotoxins: Identification of the N-terminal region involved in protein substrate recognition. Infect. Immun. 66: 1076-1081.
  9. Hofmann, F., C. Busch, U. Prepens, I. Just, and K. Aktories. 1997. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J. Biol. Chem. 272: 11074-11078. https://doi.org/10.1074/jbc.272.17.11074
  10. Just, I., J. Selzer, M. Wilm, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500-503. https://doi.org/10.1038/375500a0
  11. Kelly, C. P. and J. T. LaMont. 1998. Clostridium difficile infection. Annu. Rev. Med. 49: 375-390. https://doi.org/10.1146/annurev.med.49.1.375
  12. Kim, H., S. H. Rhee, E. Kokkotou, X. Na, T. Savidge, M. P. Moyer, C. Pothoulakis, and J. T. LaMont. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245. https://doi.org/10.1074/jbc.M413842200
  13. Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. Lamont. 2009. Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Exp. Cell Res. 315: 3336-3344. https://doi.org/10.1016/j.yexcr.2009.05.020
  14. Lyerly, D. M., K. E. Saum, D. K. MacDonald, and T. D. Wilkins. 1985. Effects of Clostridium difficile toxins given intragastrically to animals. Infect. Immun. 47: 349-352.
  15. Mazharian, A., S. P. Watson, and S. Severin. 2009. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility and proplatelet formation. Exp. Hematol. 37: 1238-1249. https://doi.org/10.1016/j.exphem.2009.07.006
  16. Mitchell, T. J., J. M. Ketley, S. C. Haslam, J. Stephen, D. W. Burdon, D. C. Candy, and R. Daniel. 1986. Effect of toxin A and B of Clostridium difficile on rabbit ileum and colon. Gut 27: 78-85. https://doi.org/10.1136/gut.27.1.78
  17. Na, X., H. Kim, M. P. Moyer, C. Pothoulakis, and J. T. LaMont. 2008. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect. Immun. 76: 2862-2871. https://doi.org/10.1128/IAI.00326-08
  18. Na, X., D. Zhao, H. W. Koon, H. Kim, J. Husmark, M. P. Moyer, C. Pothoulakis, and J. T. LaMont. 2005. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128: 1002-1011. https://doi.org/10.1053/j.gastro.2005.01.053
  19. Reineke, J., S. Tenzer, M. Rupnik, A. Koschinski, O. Hasselmayer, A. Schrattenholz, H. Schild, and C. von Eichel-Streiber. 2007. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446: 415-419. https://doi.org/10.1038/nature05622
  20. Triadafilopoulos, G., C. Pothoulakis, M. J. O'Brien, and J. T. LaMont. 1987. Differential effects of Clostridium difficile toxins A and B on rabbit ileum. Gastroenterology 93: 273-279. https://doi.org/10.1016/0016-5085(87)91014-6
  21. Wang, Z., H. Yang, F. Zhang, Z. Pan, J. Capo-Aponte, and P. S. Reinach. 2009. Suppression of GSK-3 activation prolongs Erk1/2 phosphorylation and augments EGF-induced migration in HCEC. Invest. Ophthalmol Vis. Sci. 50.
  22. Warny, M., A. C. Keates, S. Keates, I. Castagliuolo, J. K. Zacks, S. Aboudola, et al. 2000. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105: 1147-1156. https://doi.org/10.1172/JCI7545
  23. Zohrabian, V. M., B. Forzani, Z. Chau, R. Murali, and M. Jhanwar-Uniyal. 2009. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res. 29: 119-123.

Cited by

  1. Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber vol.37, pp.None, 2012, https://doi.org/10.1016/j.anaerobe.2015.12.007