DOI QR코드

DOI QR Code

Effects of the Synthetic Coprisin Analog Peptide, CopA3 in Pathogenic Microorganisms and Mammalian Cancer Cells

  • Kim, In-Woo (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Soon-Ja (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kwon, Yong-Nam (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ahn, Mi-Young (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kang, Dong-Chul (Ilsong Institute of Life Science, Hallym University) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2011.09.08
  • Accepted : 2011.09.30
  • Published : 2012.01.28

Abstract

A synthetic coprisin analog peptide, 9-mer dimer CopA3 (CopA3) was designed based on a defensin-like peptide, Coprisin, isolated from the bacteria-immunized dung beetle Copris tripartitus. Here, CopA3 was investigated for its antimicrobial activity and cancer cell growth inhibition. CopA3 showed antimicrobial activities against various pathogenic bacteria and yeast fungus with MIC values in 2~32 ${\mu}M$ ranges, and inhibited the cell viabilities of pancreatic and hepatocellular cancer cells, except MIA-Paca2, Hep3B, and HepG2 cells, in a dose-dependent manner. The average $IC_{50}$ values of CopA3 against pancreatic and hepatocellular cancer cells were 61.7 ${\mu}M$ and 67.8 ${\mu}M$, respectively. The results indicate that CopA3 has potential in the treatments of pancreatic and hepatocellular cancers as well as microorganism infection disease.

Keywords

References

  1. Baker, M. A., W. L. Maloy, M. Zasloff, and L. S. Jacob. 1993. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 53: 3052-3057.
  2. Barbault, F., C. Landon, M. Guenneugues, J. P. Meyer, V. Schott, J. L. Dimarcq, and F. Vovelle. 2003. Solution structure of Alo-3: A new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42: 14434-14442. https://doi.org/10.1021/bi035400o
  3. Bulet, P., S. Cociancich, M. Reuland, F. Sauber, R. Bischoff, G. Hegy, et al. 1992. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur. J. Biochem. 209: 977-984. https://doi.org/10.1111/j.1432-1033.1992.tb17371.x
  4. Bulet, P., C. Hetru, J. L. Dimarcq, and D. Hoffmann. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23: 329-344. https://doi.org/10.1016/S0145-305X(99)00015-4
  5. Bulet, P. and R. Stocklin. 2005. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Pept. Lett. 12: 3-11. https://doi.org/10.2174/0929866053406011
  6. Cociancich, S., A. Ghazi, C. Hetru, J. A. Hoffmann, and L. Letellier. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268: 19239-19245.
  7. Dempsey, C. E. 1990. The actions of melittin on membranes. Biochim. Biophys. Acta 1031: 143-161. https://doi.org/10.1016/0304-4157(90)90006-X
  8. Hancock, R. E. and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
  9. Hancock, R. E. and M. G. Scott. 2000. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 97: 8856-8861. https://doi.org/10.1073/pnas.97.16.8856
  10. Hwang, J. S., J. Lee, Y. J. Kim, H. S. Bang, E. Y. Yun, S. R. Kim, et al. 2009. Isolation and characterization of a defensinlike peptide (coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. 2009.
  11. Iwasaki, T., J. Ishibashi, H. Tanaka, M. Sato, A. Asaoka, D. Taylor, et al. 2009. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30: 660-668. https://doi.org/10.1016/j.peptides.2008.12.019
  12. Lehmann, J., M. Retz, S. S. Sidhu, H. Suttmann, M. Sell, F. Paulsen, et al. 2006. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol. 50: 141-147. https://doi.org/10.1016/j.eururo.2005.12.043
  13. Moore, A. J., D. A. Devine, and M. C. Bibby. 1994. Preliminary experimental anticancer activity cecropins. Pept. Res. 7: 265-269.
  14. Papo, N., A. Braunstein, Z. Eshhar, and Y. Shai. 2004. Suppression of human prostate tumor growth in mice by a cytolytic D-,L-amino acid peptide, membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res. 64: 5779-5786. https://doi.org/10.1158/0008-5472.CAN-04-1438
  15. Papo, N. and Y. Shai. 2003. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 42: 9346-9354. https://doi.org/10.1021/bi027212o
  16. Papo, N. and Y. Shai. 2005. Host defense peptides as new weapons in cancer treatment. Cell Mol. Life Sci. 62: 784-790. https://doi.org/10.1007/s00018-005-4560-2
  17. Schuhmann, B., V. Seitz, A. Vilcinskas, and L. Podsiadlowski. 2003. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53: 125-133. https://doi.org/10.1002/arch.10091
  18. Soballe, P. W., W. L. Maloy, M. L. Myrga, L. S. Jacob, and M. Herlyn. 1995. Experimental local therapy of human melanoma with lytic magainin peptides. Int. J. Cancer 60: 280-284. https://doi.org/10.1002/ijc.2910600225
  19. Thevissen, K., K. K. Ferket, I. E. Francois, and B. P. Cammue. 2003. Interactions of antifungal plant defensins with fungal membrane components. Peptides 24: 1705-1712. https://doi.org/10.1016/j.peptides.2003.09.014
  20. Tosteson, M. T., S. J. Holmes, M. Razin, and D. C. Tosteson. 1985. Melittin lysis of red cells. J. Membr. Biol. 87: 35-44. https://doi.org/10.1007/BF01870697
  21. Xiao, Y. C., Y. D. Huang, P. L. Xu, Z. Q. Zhou, and X. K. Li. 2006. Pro-apoptotic effect of cecropin AD on nasopharyngeal carcinoma cells. Chin. Med. J. (Engl.) 119: 1042-1046.

Cited by

  1. Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis vol.43, pp.2, 2012, https://doi.org/10.3892/ijo.2013.1973
  2. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells vol.48, pp.6, 2012, https://doi.org/10.5483/bmbrep.2015.48.6.073
  3. Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4162-z
  4. How are the expression patterns of gut antimicrobial peptides modulated by human gastrointestinal diseases? A bridge between infectious, inflammatory, and malignant diseases vol.24, pp.3, 2012, https://doi.org/10.1002/psc.3071
  5. Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages vol.48, pp.1, 2020, https://doi.org/10.1080/21691401.2020.1748639
  6. Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin vol.9, pp.2, 2012, https://doi.org/10.3390/microorganisms9020222
  7. Potent Activity of Hybrid Arthropod Antimicrobial Peptides Linked by Glycine Spacers vol.22, pp.16, 2012, https://doi.org/10.3390/ijms22168919