DOI QR코드

DOI QR Code

Metabolite Profiling and Bioactivity of Rice Koji Fermented by Aspergillus Strains

  • Kim, Ah-Jin (Department of Bioscience and Biotechnology, BMIC, Konkuk University) ;
  • Choi, Jung-Nam (Department of Bioscience and Biotechnology, BMIC, Konkuk University) ;
  • Kim, Ji-Young (Department of Bioscience and Biotechnology, BMIC, Konkuk University) ;
  • Kim, Hyang-Yeon (Department of Bioscience and Biotechnology, BMIC, Konkuk University) ;
  • Park, Sait-Byul (Department of Bioscience and Biotechnology, BMIC, Konkuk University) ;
  • Yeo, Soo-Hwan (Fermentation and Food Processing Division, National Academy of Agricultural Science) ;
  • Choi, Ji-Ho (Fermentation and Food Processing Division, National Academy of Agricultural Science) ;
  • Liu, Kwang-Hyeon (College of Pharmacy, Kyungpook National University) ;
  • Lee, Choong-Hwan (Department of Bioscience and Biotechnology, BMIC, Konkuk University)
  • Received : 2011.06.15
  • Accepted : 2011.07.22
  • Published : 2012.01.28

Abstract

In this study, the metabolite profiles of three Aspergillus strains during rice koji fermentation were compared. In the partial least squares discriminant analysis-based gas chromatography-mass spectrometry data sets, the metabolite patterns of A. oryzae (KCCM 60345) were clearly distinguished from A. kawachii (KCCM 60552) and only marginal differences were observed for A. oryzae (KCCM 60551) fermentation. In the 2 days fermentation samples, the overall metabolite levels of A. oryzae (KCCM 60345) were similar to the A. oryzae (KCCM 60551) levels and lower than the A. kawachii (KCCM 60552) levels. In addition, we identified discriminators that were mainly contributing tyrosinase inhibition (kojic acid) and antioxidant activities (pyranonigrin A) in A. oryzae (KCCM 60345) and A. kawachii (KCCM 60552) inoculated rice koji, respectively. In this study, we demonstrated that the optimal inoculant Aspergillus strains and fermentation time for functional rice koji could be determined through a metabolomics approach with bioactivity correlations.

Keywords

References

  1. Arnstein, H. R. V. and R. Bentley. 1953. The biosynthesis of kojic acid. 1. Production from [1-$^{14}C$] and [3:4-$^{14}C_2$] glucose and [2-$^{14}C$]-1:3-dihydroxyacetone. Biochem. J. 54: 493-508. https://doi.org/10.1042/bj0540493
  2. Bentley, R. 2006. From miso, sake and shoyu to cosmetics: A century of science for kojic acid. Nat. Prod. Rep. 23: 1046-1062. https://doi.org/10.1039/b603758p
  3. Benzie, I. F. F. and J. J. Strain. 1996. Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  4. Blandino, A., M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb. 2003. Cereal-based fermented food and beverages. Food Res. Int. 36: 527-543. https://doi.org/10.1016/S0963-9969(03)00009-7
  5. Brennan, L. 2008. Session 2: Personalised nutrition metabolomic applications in nutritional research. Proc. Nutr. Soc. 67: 404-408. https://doi.org/10.1017/S0029665108008719
  6. Burdock, G. A., M. G. Soni, and I. G. Carabin. 2001. Evaluation of health aspects of kojic acid in food. Regul. Toxicol. Pharmacol. 33: 80-101. https://doi.org/10.1006/rtph.2000.1442
  7. Buscher, J. M., D. Czernik, J. C. Ewald, U. Sauer, and N. Zanboni. 2009. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 81: 2135-2143. https://doi.org/10.1021/ac8022857
  8. Dietz, B. M., Y. H. Kang, G. Liu, A. L. Eggler, P. Yao, L. R. Chadwick, et al. 2008. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305.
  9. Jonsson, P., J. Gullberg, A. Nordstrom, M. Kusano, M. Kowalczyk, M. Syostrom, and T. A. Moritz. 2004. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 76: 1738-1745. https://doi.org/10.1021/ac0352427
  10. Justesen, U., P. Knuthsen, and T. Leth. 1998. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 799: 101-110. https://doi.org/10.1016/S0021-9673(97)01061-3
  11. Kim, A. J., J. N. Choi, J. Y. Kim, S. B. Park, S. H. Yeo, J. H. Choi, and C. H. Lee. 2010. GC-MS based metabolite profiling of rice koji fermentation by various fungi. Biosci. Biotechnol. Biochem. 74: 2267-2272. https://doi.org/10.1271/bbb.100488
  12. Kim, J. H., S. H. Baek, D. H. Kim, T. Y. Choi, T. J. Yoon, J. S. Hwang, M. R. Kim, H. J. Kwon, and C. H. Lee. 2008. Downregulation of melanin synthesis by haginin A and its application to in vivo lightening model. J. Invest. Dermatol. 128: 1227-1235. https://doi.org/10.1038/sj.jid.5701177
  13. Ku, K. M., J. N. Choi, J. Y. Kim, J. K. Kim, L. G. Yoo, S. J. Lee, Y. S. Hong, and C. H. Lee. 2010. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J. Agric. Food Chem. 58: 418-426. https://doi.org/10.1021/jf902929h
  14. Ku, K. M., J. Y. Kim, H. J. Park, K. H. Liu, and C. H. Lee. 2010. Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different post fermentation year. J. Agric. Food Chem. 58: 345-352. https://doi.org/10.1021/jf902818c
  15. Lee, J. E., G. S. Hwang, C. H. Lee, and Y. S. Hong. 2009. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. J. Agric. Food Chem. 57: 10772-10783. https://doi.org/10.1021/jf9028442
  16. Lee, M. Y., J. H. Kim, J. N. Choi, J. Y. Kim, G. S. Hwang, and C. H. Lee. 2010. The melanin synthesis inhibition and radical scavenging activities of compounds isolated from the aerial Part of Lespedeza cyrtobotrya. J. Microbiol. Biotechnol. 20: 988-994. https://doi.org/10.4014/jmb.0905.05054
  17. Machida, M., O. Yamada, and K. Gomi. 2008. Genomics of Aspergillus oryzae: Learning from the history of koji mold and exploration of its future. DNA Res. 15: 173-183. https://doi.org/10.1093/dnares/dsn020
  18. Miyake, Y., C. Ito, M. Itoigawa, and T. Osawa. 2007. Isolation of the antioxidant pyranonigrin-A from rice mold starters used in the manufacturing process of fermented foods. Biosci. Biotechnol. Biochem. 71: 2515-2521. https://doi.org/10.1271/bbb.70310
  19. Nurgel, C. and G. Pickering. 2005. Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited by model white wines. J. Texture Stud. 36: 303-323. https://doi.org/10.1111/j.1745-4603.2005.00018.x
  20. Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17: 770-778. https://doi.org/10.1016/0141-0229(94)00003-A
  21. Ogawa, A., Y. Wakisaka, T. Tanaka, T. Sakiyama, and K. Nakanishi. 1995. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. J. Ferment. Bioeng. 80: 41-45. https://doi.org/10.1016/0922-338X(95)98174-J
  22. Oikawa, A., F. Matsuda, M. Kusano, Y. Okazaki, and K. Saito. 2008. Rice metabolomics. Rice 1: 63-71. https://doi.org/10.1007/s12284-008-9009-4
  23. Pongsuwan, W., E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara, and A. Kobayashi. 2007. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem. 55: 231-236. https://doi.org/10.1021/jf062330u
  24. Poutanen, K. 1997. Enzymes: An important tool in the improvement of the quality of cereal foods. Trends Food Sci. Technol. 8: 300-306. https://doi.org/10.1016/S0924-2244(97)01063-7
  25. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  26. Shemidt, A. L., C. R. Curtis, and G. A. Bean. 1977. Electrophoretic comparisons of mycelial enzymes from aflatoxin-producing and non-producing strains of Aspergillus flavus and Aspergillus parasiticus. Can. J. Microbiol. 23: 60-67. https://doi.org/10.1139/m77-008
  27. Shu, X. L., T. Frank, Q. Y. Shu, and K. H. Engel. 2008. Metabolite profiling of germinating rice seeds. J. Agric. Food Chem. 56: 11612-11620. https://doi.org/10.1021/jf802671p
  28. Suganuma, D., K. Fujita, and K. Kitahara. 2007. Some distinguishable properties between acid-stable and neutral types of [alpha]-amylases from acid-producing koji. J. Biosci. Bioeng. 5: 353-362.
  29. Wishart, D. S. 2008. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 19: 482-493. https://doi.org/10.1016/j.tifs.2008.03.003

Cited by

  1. Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity vol.4, pp.92, 2014, https://doi.org/10.1039/c4ra09047k
  2. Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway vol.178, pp.8, 2012, https://doi.org/10.1007/s12010-015-1970-y
  3. Metabolomics Reveal Optimal Grain Preprocessing (Milling) toward Rice Koji Fermentation vol.66, pp.11, 2012, https://doi.org/10.1021/acs.jafc.7b05131
  4. Intraspecies Volatile Interactions Affect Growth Rates and Exometabolomes in Aspergillus oryzae KCCM 60345 vol.28, pp.2, 2012, https://doi.org/10.4014/jmb.1711.11005
  5. Fathoming Aspergillus oryzae metabolomes in formulated growth matrices vol.39, pp.1, 2019, https://doi.org/10.1080/07388551.2018.1490246
  6. Comparative Evaluation of Six Traditional Fermented Soybean Products in East Asia: A Metabolomics Approach vol.9, pp.9, 2012, https://doi.org/10.3390/metabo9090183
  7. Metabolic Visualization Reveals the Distinct Distribution of Sugars and Amino Acids in Rice Koji vol.9, pp.1, 2012, https://doi.org/10.5702/massspectrometry.a0089
  8. Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study vol.11, pp.8, 2012, https://doi.org/10.3390/metabo11080524