References
-
Arias, L. M. and P. Argos. 1989. Engineering protein thermal stability; sequence statistics point to residue substitutions in
$\alpha$ -helices. J. Mol. Biol. 206: 397-406. https://doi.org/10.1016/0022-2836(89)90488-9 - Bakker, P. I. W., P. H. Hunenberger, and J. A. McCammon. 1999. Molecular dynamics simulations of the hyperthermophilic Sulfolobus acidocaldarius: Contribution of salt bridges to thermostability. J. Mol. Biol. 285: 1811-1830. https://doi.org/10.1006/jmbi.1998.2397
- Braxton, S. B. and J. A. Wells. 1991. Incorporation of a Cabinding loop into subtilisin BPN'. Biochemistry 31: 7796-7801.
- Bryan, P. N. 2000. Protein engineering of subtilisin. Biochim. Biophys. Acta 1543: 203-222. https://doi.org/10.1016/S0167-4838(00)00235-1
- Choi, I. G., W. G. Barg, S. H. Kim, and Y. G. Yu. 1999. Extremely thermostable serine-type protease from the Aquifex pyrophilus. J. Biol. Chem. 274: 881-888. https://doi.org/10.1074/jbc.274.2.881
- Colovos, C. and T. O. Yeates. 1992. Verification of protein structures: Patterns of non-bonded atomic interaction. Protein Sci. 2: 1511-1519.
- El-Bastawissy, E., M. H. Knaggs, and I. H. Gilbert. 2001. Molecular dynamics simulations of the wild-type and point mutation human prion protein at normal and elevated temperature. J. Mol. Graph Model 20: 145-154. https://doi.org/10.1016/S1093-3263(01)00113-9
- Fontana, A., P. P. de Laureto, B. Spolaore, E. Frare, P. Picotti, and M. Zambomin. 2004. Probing protein structure by limited proteolysis. Acta Biochim. Pol. 51: 299-321.
- Fu, Z., S. A. Hamid, C. N. A. Razak, M. BAsri, A. B. Salleh, and R. N. Z. A. Rahman. 2003. Secretory expression in Escherichia coli and single step purification of a heat-stable alkaline protease. Protein Express. Purif. 28: 63-68. https://doi.org/10.1016/S1046-5928(02)00637-X
- Gsponer, J., P. Ferrara, and A. Caflisch. 2001. Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations. J. Mol. Graph Model 20: 169-182. https://doi.org/10.1016/S1093-3263(01)00117-6
- Haki, G. D. and S. T. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
-
Jang, J. S., K. H. Bae, and S. M. Byun. 1992. Effect of the weak
$Ca^{2+}$ binding site of subtilisin J by site-directed mutagenesis on heat stability. Biochem. Biophys. Res. Commun. 188: 184-189. https://doi.org/10.1016/0006-291X(92)92367-7 - Karasaki, Y. and M. Ohno. 1979. Interactions of BPN' and Carlsberg subtilisin with peptides containing aromatic amino acids at the C-terminus: Specific rate enhancement due to the secondary enzyme-substrate interaction. J. Biochem. 86: 563-567. https://doi.org/10.1093/oxfordjournals.jbchem.a132555
- Katamari, Y. O., C. M. Dobson, and T. Konno. 2003. Structural dissection of alkaline-denatured pepsin. Prot. Sci. 12: 717-724. https://doi.org/10.1110/ps.0219903
- Knapp, S., W. M. de Vos, D. Rice, and R. Ladenstein. 1997. Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. J. Mol. Biol. 267: 916-932. https://doi.org/10.1006/jmbi.1996.0900
- Kojima, S., T. Minagawa, and K. Miura. 1998. Tertiary structure formation in the propetide of subtilisin BPN' by successive amino acid replacements and its close relation to function. J. Mol. Biol. 277: 1007-1013. https://doi.org/10.1006/jmbi.1998.1671
- Kumar, S., C. Tsai, and R. Nussinov. 2000. Factors enhancing protein stability. Protein Eng. 13: 179-191. https://doi.org/10.1093/protein/13.3.179
- Laskowski, R. A., M. W. MacArthur, D. K. Smith, D. T. Jones, E. G. Hutchinson, A. L. Morris, et al. 1994. Procheck V.3.5.4: Operating Manual. http://www.biochemical.ucl.ac.uk/-roman/procheck/procheck.html.
- Laemmli, U. K. 1970. Cleavage of structural protein during assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lüthy, R., J. U. Bowie, and D. Eisenberg. 1992. Assessment of the protein models with three-dimensional profiles. Nature 356: 83-85. https://doi.org/10.1038/356083a0
- Marti-Renom, M. A., J. M. Mas, B. Oliva, E. Querol, and F. X. Aviles. 1998. Effects of counter-ions and volume on the simulated dynamics of solvated proteins. Application on the activation domain of procarboxypeptidase B. Protein Eng. 11: 881-890. https://doi.org/10.1093/protein/11.10.881
- Mattos, C. 2002. Protein-interactions in a dynamic world. Trends Biochem. Sci. 27: 203-208. https://doi.org/10.1016/S0968-0004(02)02067-4
- Mrabet, N. T., A. Van den Broeck, I. Van den Brande, P. Stanssens, Y. Laroche, A. M. Lambeir, et al. 1992. Arginine residues as stabilizing elements in proteins. Biochemistry 31: 2239-2253. https://doi.org/10.1021/bi00123a005
- Nagendra, H. G., N. Sukumar, and M. Vijayan. 1998. Role of water in plasticity, stability, and action of proteins: The crystal structures of lysozyme at very low levels of hydration. Proteins 32: 229-240. https://doi.org/10.1002/(SICI)1097-0134(19980801)32:2<229::AID-PROT9>3.0.CO;2-F
-
Okimoto, N., K. Yamanaka, A. Suenaga, Y. Hirano, N. Futatsugi, T. Narumi, et al. 2003. Molecular dynamics simulations of prion proteins: Effect of
$Ala^{117}$ to Val mutation. Construction. 3: 1-11. - Pack, S. P. and Y. J. Yoo. 2004. Protein thermostability: Structure-based difference of amino acid between thermophilic and mesophilic proteins. J. Biotechnol. 111: 269-277. https://doi.org/10.1016/j.jbiotec.2004.01.018
- Padone, E., R. Cannio, M. Saviano, M. Rossi, and S. Bartolucci. 1999. Prediction and experimenal testing of Bacillus acidocaldarius thioredoxin stability. Biochem. J. 339: 309-317.
- Pantoliano, M. W., R. C. Ladner, P. N. Bryan, M. L. Rolence, J. F. Wood, and T. L. Poulos. 1987. Protein engineering of subtilisin BPN': Stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26: 2077-2082. https://doi.org/10.1021/bi00382a002
- Pantoliano, M. W., M. Whitlow, J. F. Wood, S. W. Dodd, K. D. Hardman, M. L. Rolence, and P. N. Bryan. 1989. Large increases in general stability for the subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry 28: 7205-7213. https://doi.org/10.1021/bi00444a012
- Rahman, R. N. Z. A., C. N. Razak, K. Ampon, M. Basri, W. M. Z. W. Yunus, and A. B. Salleh. 1994. Purification and characterization of a heat-stable alkaline protease from Bacillus stearothemophilus F1. Appl. Microbiol. Biotechnol. 40: 822-827. https://doi.org/10.1007/BF00173982
- Rahman, R. N. Z. A., S. Fujiwara, H. Nakamura, M. Takagi, and T. Imanaka. 1998. Ion pairs involved in maintaining a thermostable structure of glutamate dehydrogenase from a hyperthermophilic archeon. Biochem. Biophys. Res. Commun. 248: 920-926. https://doi.org/10.1006/bbrc.1998.8933
- Sali, A. and T. L. Blundell. 1993. Comparative modeling by satisfaction of the spatial restraints. J. Mol. Biol. 234: 779-815. https://doi.org/10.1006/jmbi.1993.1626
- Smith, C. A., H. S. Toogood, H. M. Baker, R. M. Daniel, and E. N. Baker. 1999. Calcium-mediated thermostability in the subtilisin superfamily: The crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. J. Mol. Biol. 294: 1027-1040. https://doi.org/10.1006/jmbi.1999.3291
- Sorensen, S. B., L. M. Bech, M. Meldal, and K. Breddam. 1993. Mutational replacements of the amino acid residues forming hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus. Biochemistry 32: 8994-8999. https://doi.org/10.1021/bi00086a003
- Takagi, H., T. Takahashi, H. Momose, M. Inouye, Y. Maeda, and H. Matsuzawa. 1990. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with thermophilic serine protease. J. Biol. Chem. 256: 6874-6878.
- Teplyakov, A. V., I. P. Kuranova, E. H. Harutyunyan, B. K. Vainshtein, C. Frommel, W. E. Hohne, and F. S. Wilson. 1990. Crystal structure of thermitase at 1.4 A resolution. J. Mol. Biol. 214: 261-279. https://doi.org/10.1016/0022-2836(90)90160-N
- Topf, M., M. L. Baker, M. A. Marti-Renom, W. Chiu, and A. Sali. 2006. Refinement of protein structures by iterative comperative modeling and cryoEM density fitting. J. Mol. Biol. 357: 1655-1668. https://doi.org/10.1016/j.jmb.2006.01.062
- Vieille, C. and G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
- Voorhorst, W. G. B., A. Warner, W. M. de Vos, and R. J. Siezen. 1997. Homology modeling of two subtilisin-like serine proteases from the hyperthemophilic archaea Pyrococcus furiosus and Thermococcus stetteri. Protein Eng. 10: 905-914. https://doi.org/10.1093/protein/10.8.905
Cited by
- Engineering and Kinetic Stabilization of the Therapeutic Enzyme Anabeana variabilis Phenylalanine Ammonia Lyase vol.171, pp.7, 2013, https://doi.org/10.1007/s12010-013-0450-5