DOI QR코드

DOI QR Code

Effect of Ion Pair on Thermostability of F1 Protease: Integration of Computational and Experimental Approaches

  • Rahman, Raja Noor Zaliha Raja Abd (Enzyme and Microbial Technology Research Group, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia) ;
  • Noor, Noor Dina Muhd (Enzyme and Microbial Technology Research Group, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia) ;
  • Ibrahim, Noor Azlina (Enzyme and Microbial Technology Research Group, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia) ;
  • Salleh, Abu Bakar (Enzyme and Microbial Technology Research Group, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia) ;
  • Basri, Mahiran (Enzyme and Microbial Technology Research Group, Faculty of Science, University Putra Malaysia)
  • Received : 2011.05.27
  • Accepted : 2011.09.15
  • Published : 2012.01.28

Abstract

A thermophilic Bacillus stearothermophilus F1 produces an extremely thermostable serine protease. The F1 protease sequence was used to predict its three-dimensional (3D) structure to provide better insights into the relationship between the protein structure and biological function and to identify opportunities for protein engineering. The final model was evaluated to ensure its accuracy using three independent methods: Procheck, Verify3D, and Errat. The predicted 3D structure of F1 protease was compared with the crystal structure of serine proteases from mesophilic bacteria and archaea, and led to the identification of features that were related to protein stabilization. Higher thermostability correlated with an increased number of residues that were involved in ion pairs or networks of ion pairs. Therefore, the mutants W200R and D58S were designed using site-directed mutagenesis to investigate F1 protease stability. The effects of addition and disruption of ion pair networks on the activity and various stabilities of mutant F1 proteases were compared with those of the wild-type F1 protease.

Keywords

References

  1. Arias, L. M. and P. Argos. 1989. Engineering protein thermal stability; sequence statistics point to residue substitutions in $\alpha$-helices. J. Mol. Biol. 206: 397-406. https://doi.org/10.1016/0022-2836(89)90488-9
  2. Bakker, P. I. W., P. H. Hunenberger, and J. A. McCammon. 1999. Molecular dynamics simulations of the hyperthermophilic Sulfolobus acidocaldarius: Contribution of salt bridges to thermostability. J. Mol. Biol. 285: 1811-1830. https://doi.org/10.1006/jmbi.1998.2397
  3. Braxton, S. B. and J. A. Wells. 1991. Incorporation of a Cabinding loop into subtilisin BPN'. Biochemistry 31: 7796-7801.
  4. Bryan, P. N. 2000. Protein engineering of subtilisin. Biochim. Biophys. Acta 1543: 203-222. https://doi.org/10.1016/S0167-4838(00)00235-1
  5. Choi, I. G., W. G. Barg, S. H. Kim, and Y. G. Yu. 1999. Extremely thermostable serine-type protease from the Aquifex pyrophilus. J. Biol. Chem. 274: 881-888. https://doi.org/10.1074/jbc.274.2.881
  6. Colovos, C. and T. O. Yeates. 1992. Verification of protein structures: Patterns of non-bonded atomic interaction. Protein Sci. 2: 1511-1519.
  7. El-Bastawissy, E., M. H. Knaggs, and I. H. Gilbert. 2001. Molecular dynamics simulations of the wild-type and point mutation human prion protein at normal and elevated temperature. J. Mol. Graph Model 20: 145-154. https://doi.org/10.1016/S1093-3263(01)00113-9
  8. Fontana, A., P. P. de Laureto, B. Spolaore, E. Frare, P. Picotti, and M. Zambomin. 2004. Probing protein structure by limited proteolysis. Acta Biochim. Pol. 51: 299-321.
  9. Fu, Z., S. A. Hamid, C. N. A. Razak, M. BAsri, A. B. Salleh, and R. N. Z. A. Rahman. 2003. Secretory expression in Escherichia coli and single step purification of a heat-stable alkaline protease. Protein Express. Purif. 28: 63-68. https://doi.org/10.1016/S1046-5928(02)00637-X
  10. Gsponer, J., P. Ferrara, and A. Caflisch. 2001. Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations. J. Mol. Graph Model 20: 169-182. https://doi.org/10.1016/S1093-3263(01)00117-6
  11. Haki, G. D. and S. T. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
  12. Jang, J. S., K. H. Bae, and S. M. Byun. 1992. Effect of the weak $Ca^{2+}$ binding site of subtilisin J by site-directed mutagenesis on heat stability. Biochem. Biophys. Res. Commun. 188: 184-189. https://doi.org/10.1016/0006-291X(92)92367-7
  13. Karasaki, Y. and M. Ohno. 1979. Interactions of BPN' and Carlsberg subtilisin with peptides containing aromatic amino acids at the C-terminus: Specific rate enhancement due to the secondary enzyme-substrate interaction. J. Biochem. 86: 563-567. https://doi.org/10.1093/oxfordjournals.jbchem.a132555
  14. Katamari, Y. O., C. M. Dobson, and T. Konno. 2003. Structural dissection of alkaline-denatured pepsin. Prot. Sci. 12: 717-724. https://doi.org/10.1110/ps.0219903
  15. Knapp, S., W. M. de Vos, D. Rice, and R. Ladenstein. 1997. Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. J. Mol. Biol. 267: 916-932. https://doi.org/10.1006/jmbi.1996.0900
  16. Kojima, S., T. Minagawa, and K. Miura. 1998. Tertiary structure formation in the propetide of subtilisin BPN' by successive amino acid replacements and its close relation to function. J. Mol. Biol. 277: 1007-1013. https://doi.org/10.1006/jmbi.1998.1671
  17. Kumar, S., C. Tsai, and R. Nussinov. 2000. Factors enhancing protein stability. Protein Eng. 13: 179-191. https://doi.org/10.1093/protein/13.3.179
  18. Laskowski, R. A., M. W. MacArthur, D. K. Smith, D. T. Jones, E. G. Hutchinson, A. L. Morris, et al. 1994. Procheck V.3.5.4: Operating Manual. http://www.biochemical.ucl.ac.uk/-roman/procheck/procheck.html.
  19. Laemmli, U. K. 1970. Cleavage of structural protein during assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  20. Lüthy, R., J. U. Bowie, and D. Eisenberg. 1992. Assessment of the protein models with three-dimensional profiles. Nature 356: 83-85. https://doi.org/10.1038/356083a0
  21. Marti-Renom, M. A., J. M. Mas, B. Oliva, E. Querol, and F. X. Aviles. 1998. Effects of counter-ions and volume on the simulated dynamics of solvated proteins. Application on the activation domain of procarboxypeptidase B. Protein Eng. 11: 881-890. https://doi.org/10.1093/protein/11.10.881
  22. Mattos, C. 2002. Protein-interactions in a dynamic world. Trends Biochem. Sci. 27: 203-208. https://doi.org/10.1016/S0968-0004(02)02067-4
  23. Mrabet, N. T., A. Van den Broeck, I. Van den Brande, P. Stanssens, Y. Laroche, A. M. Lambeir, et al. 1992. Arginine residues as stabilizing elements in proteins. Biochemistry 31: 2239-2253. https://doi.org/10.1021/bi00123a005
  24. Nagendra, H. G., N. Sukumar, and M. Vijayan. 1998. Role of water in plasticity, stability, and action of proteins: The crystal structures of lysozyme at very low levels of hydration. Proteins 32: 229-240. https://doi.org/10.1002/(SICI)1097-0134(19980801)32:2<229::AID-PROT9>3.0.CO;2-F
  25. Okimoto, N., K. Yamanaka, A. Suenaga, Y. Hirano, N. Futatsugi, T. Narumi, et al. 2003. Molecular dynamics simulations of prion proteins: Effect of $Ala^{117}$ to Val mutation. Construction. 3: 1-11.
  26. Pack, S. P. and Y. J. Yoo. 2004. Protein thermostability: Structure-based difference of amino acid between thermophilic and mesophilic proteins. J. Biotechnol. 111: 269-277. https://doi.org/10.1016/j.jbiotec.2004.01.018
  27. Padone, E., R. Cannio, M. Saviano, M. Rossi, and S. Bartolucci. 1999. Prediction and experimenal testing of Bacillus acidocaldarius thioredoxin stability. Biochem. J. 339: 309-317.
  28. Pantoliano, M. W., R. C. Ladner, P. N. Bryan, M. L. Rolence, J. F. Wood, and T. L. Poulos. 1987. Protein engineering of subtilisin BPN': Stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26: 2077-2082. https://doi.org/10.1021/bi00382a002
  29. Pantoliano, M. W., M. Whitlow, J. F. Wood, S. W. Dodd, K. D. Hardman, M. L. Rolence, and P. N. Bryan. 1989. Large increases in general stability for the subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry 28: 7205-7213. https://doi.org/10.1021/bi00444a012
  30. Rahman, R. N. Z. A., C. N. Razak, K. Ampon, M. Basri, W. M. Z. W. Yunus, and A. B. Salleh. 1994. Purification and characterization of a heat-stable alkaline protease from Bacillus stearothemophilus F1. Appl. Microbiol. Biotechnol. 40: 822-827. https://doi.org/10.1007/BF00173982
  31. Rahman, R. N. Z. A., S. Fujiwara, H. Nakamura, M. Takagi, and T. Imanaka. 1998. Ion pairs involved in maintaining a thermostable structure of glutamate dehydrogenase from a hyperthermophilic archeon. Biochem. Biophys. Res. Commun. 248: 920-926. https://doi.org/10.1006/bbrc.1998.8933
  32. Sali, A. and T. L. Blundell. 1993. Comparative modeling by satisfaction of the spatial restraints. J. Mol. Biol. 234: 779-815. https://doi.org/10.1006/jmbi.1993.1626
  33. Smith, C. A., H. S. Toogood, H. M. Baker, R. M. Daniel, and E. N. Baker. 1999. Calcium-mediated thermostability in the subtilisin superfamily: The crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. J. Mol. Biol. 294: 1027-1040. https://doi.org/10.1006/jmbi.1999.3291
  34. Sorensen, S. B., L. M. Bech, M. Meldal, and K. Breddam. 1993. Mutational replacements of the amino acid residues forming hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus. Biochemistry 32: 8994-8999. https://doi.org/10.1021/bi00086a003
  35. Takagi, H., T. Takahashi, H. Momose, M. Inouye, Y. Maeda, and H. Matsuzawa. 1990. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with thermophilic serine protease. J. Biol. Chem. 256: 6874-6878.
  36. Teplyakov, A. V., I. P. Kuranova, E. H. Harutyunyan, B. K. Vainshtein, C. Frommel, W. E. Hohne, and F. S. Wilson. 1990. Crystal structure of thermitase at 1.4 A resolution. J. Mol. Biol. 214: 261-279. https://doi.org/10.1016/0022-2836(90)90160-N
  37. Topf, M., M. L. Baker, M. A. Marti-Renom, W. Chiu, and A. Sali. 2006. Refinement of protein structures by iterative comperative modeling and cryoEM density fitting. J. Mol. Biol. 357: 1655-1668. https://doi.org/10.1016/j.jmb.2006.01.062
  38. Vieille, C. and G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
  39. Voorhorst, W. G. B., A. Warner, W. M. de Vos, and R. J. Siezen. 1997. Homology modeling of two subtilisin-like serine proteases from the hyperthemophilic archaea Pyrococcus furiosus and Thermococcus stetteri. Protein Eng. 10: 905-914. https://doi.org/10.1093/protein/10.8.905

Cited by

  1. Engineering and Kinetic Stabilization of the Therapeutic Enzyme Anabeana variabilis Phenylalanine Ammonia Lyase vol.171, pp.7, 2013, https://doi.org/10.1007/s12010-013-0450-5