DOI QR코드

DOI QR Code

오존처리에 의한 수중의 인공 사향물질 제거특성

Removal Characteristics of Synthetic Musk Compounds in Water by Ozone Treatment

  • 서창동 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 이상원 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소)
  • 투고 : 2012.01.04
  • 심사 : 2012.02.24
  • 발행 : 2012.02.29

초록

낙동강 원수와 급속 사여과 처리수중에 함유된 인공 사향물질(Synthetic Musk Compounds, SMCs) 3종에 대해 오존처리 공정에서의 제거특성을 살펴본 결과, Musk Ketone (MK)이 AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene)과 HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[c]-2-benzopyran)에 비해 오존처리에 의한 제거율이 낮게 나타났다. 그리고 동일한 운전조건에서 원수에 함유된 SMCs의 제거율은 원수 중에 함유된 오존 소모물질들에 의한 영향으로 급속 사여과처리수에 함유된 경우보다 제거율이 훨씬 낮았다. 오존 투입농도 0.5~10.0 mg/L에서 낙동강 원수와 급속 사여과 처리수 중에 함유된 3종의 SMCs에 대한 제거 속도상수(k)는 오존 투입농도가 증가할수록 급격히 증가하는 경향을 나타내었고, 반감기 역시 오존 투입농도 증가에 비례하여 급격히 감소하였다. 전/후오존 공정이 갖추어진 낙동강 하류에 위치한 정수장들의 경우, 전오존 공정은 최대 1.5~2.0 mg/L의 오존 투입농도로 2~4분 및 후오존 공정은 최대 2.0~2.5 mg/L의 오존 투입농도로 6~8분 정도의 체류시간을 가지도록 설계되어져 있어 비교적 고농도의 SMCs가 유입될 경우에는 오존처리만으로는 이들 물질들에 대한 제어가 어려운 것으로 나타났다.

In this study, three different synthetic musk compounds (SMCs) in the Nakdong river water (raw water) and rapid sand filtered water were treated by $O_3$ process. The experimental results showed that the removal efficiency of musk ketone (MK) was lower than removal efficiency of AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene) and HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[c]-2-benzopyran) for both the raw water and the rapid sand filtered water. And in general, the removal efficiencies of three SMCs in the raw water were lower than that in the sand filtered water. Under the $O_3$ dose of 0.5~10.0 mg/L, the removal rate constants (k) of three SMCs for the raw and sand filtered waters increased rapidly with the increased $O_3$ dose. In the case of drinking water treatment plants (DWTPs) which were selected pre- and post-$O_3$ processes (located in the downstream of Nakdong River), operation conditions of pre- and post-$O_3$ process were $0.5{\sim}2.0mg{\cdot}O_3/L$ (2~4 min) and $0.5{\sim}2.5mg{\cdot}O_3/L$ (6~8 min). Therefore, $O_3$ doses and contact times of same conditions with above were very difficult to remove SMCs in DWTPs.

키워드

참고문헌

  1. Gatermann, R., Biselli, S., Hunerfuss, H., Rimkus, G. G., Hecker, M. and Karbe, L., "Synthetic musks in the environment. Part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels," Arch. Environ. Contam. Toxicol. 42, 437-446(2002). https://doi.org/10.1007/s00244-001-0041-2
  2. Balk, F. and Ford, R. A., "Environmental risk assessment for the polycyclic musks, AHTN and HHCB. I. Effect assessment and risk characterization," Toxicol. Lett., 111, 81-94(1999). https://doi.org/10.1016/S0378-4274(99)00170-8
  3. Peck, A. M., "Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices," Anal. Bioanal. Chem., 386, 907-939(2006). https://doi.org/10.1007/s00216-006-0728-3
  4. Heberer, T., "Occurrence, fate and assessment of polycyclic musk residues in the aquatic environment of urban area-a review," Acta Hydrochim. Hydrobiol., 30(5-6), 227-243(2002). https://doi.org/10.1002/aheh.200390005
  5. Dsikowitzky, L., Schwarzbauer, J. and Littke, R., "Distribution of polycyclic musks in water and particulate matter of Lippe River (Germany)," Organic Geochemistry, 33, 1747- 758(2002). https://doi.org/10.1016/S0146-6380(02)00115-8
  6. Simonich, S. L., Federle, T. W., Eckhoff, W. S., Rottiers, A., Webb, S., Sabaliunas, D. and Wolf, W., "Removal of fragrance materials during U.S. and European wastewater treatment," Environ. Sci. Technol., 36(13), 2839-2847(2002). https://doi.org/10.1021/es025503e
  7. Simonich, S. L., Begley, W. M., Debaere, G. and Eckhoff, W. S., "Trace analysis of fragrance materials in wastewater and treated wastewater," Environ. Sci. Technol., 34, 959-965 (2000). https://doi.org/10.1021/es991018g
  8. 서창동, 손희종, 이인석, 오정은, "낙동강 수계에서의 인공 사향물질 검출 특성," 대한환경공학회지, 32(6), 615-624 (2010).
  9. Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E., "Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment," Environ. Sci. Technol., 39, 6649-6663(2005). https://doi.org/10.1021/es0484799
  10. Snyder, S. A., Wert, E. C., Lei, H. D., Westerhoff, P. and Yoon, Y., "What are the most effective treatment methods for removing EDCs and PPCPs?," J. AWWA., 36(10), 24- 27(2010).
  11. Snyder, S. A., Wert, E. C., Rexing, D. J., Zegers, R. E. and Drury, D. D., "Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater," Ozone. Sci. Eng., 28, 445-460(2006). https://doi.org/10.1080/01919510601039726
  12. Ikehata, K., Gammal El-Din, M. and Snyder, S. A., "Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater," Ozone. Sci. Eng., 30, 21-26(2008). https://doi.org/10.1080/01919510701728970
  13. Broseus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Shuve S., Barbeau, B. and Prevost, M., "Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment," Water Res., 43, 4707-4717(2009). https://doi.org/10.1016/j.watres.2009.07.031
  14. Garcia-Ac, A., Broseus, R., Vincent, S., Barbeau, B., Prevst, M. and Shuve S., "Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water," Chemosphere, 79, 1056-1063(2010).
  15. von Gunten, U., "Ozonation of drinking water: Part I. Oxidation kinetics and product formation," Water Res., 37, 1443- 1467(2003). https://doi.org/10.1016/S0043-1354(02)00457-8
  16. Tas, J. W., Balk, F., Ford, R. A., vandePlassche, E. J., "Environmental risk assessment musk ketone and musk xylene in the Netherlands in accordance with the EU-TGD," Chemosphere, 35, 2973-3002(1997). https://doi.org/10.1016/S0045-6535(97)00261-0
  17. Paasivirta, J., Sinkkonen, S., Rantalainen, A. L., Broman, D. and Zebuhr, Y., "Temperature dependent properties of environmentally important synthetic musks," Environ. Sci. Pollut. Res. Int., 9(5), 345-355(2002). https://doi.org/10.1007/BF02987579
  18. Lee, I. S., Lee, S. H. and Oh, J. E., "Occurrence and fate of synthetic musk compounds in water environment," Water Res., 44, 214-222(2010). https://doi.org/10.1016/j.watres.2009.08.049
  19. Janzen, N., Dopp, E., Hesse, J., Richards, J., Turk, J. and Bester, K., "Transformation products and reaction kinetics of fragrances in advanced wastewater treatment with ozone," Chemosphere, 85, 1481-1486(2011). https://doi.org/10.1016/j.chemosphere.2011.08.043