DOI QR코드

DOI QR Code

Control of ovarian primordial follicle activation

  • Kim, Jin-Yeong (Department of Obstetrics and Gynecology, Cheil General Hospital, Kwandong University College of Medicine)
  • Received : 2012.03.23
  • Accepted : 2012.03.30
  • Published : 2012.03.31

Abstract

The ovarian follicles develop initially from primordial follicles. The majority of ovarian primordial follicles are maintained quiescently as a reserve for the reproductive life span. Only a few of them are activated and develop to an advanced follicular stage. The maintenance of dormancy and activation of primordial follicles are controlled by coordinated actions of a suppressor/activator with close communications with somatic cells and intra-oocyte signaling pathways. Many growth factors and signaling pathways have been identified and the transforming growth factor-beta superfamily plays important roles in early folliculogenesis. However, the mechanism of maintaining the dormancy and survival of primordial follicles has remained unknown for decades. Recently, since the first finding that all primordial follicles are activated prematurely in mice deficient forkhead box O3a, phosphatidylinositol 3 kinase/phosphatase and tensin homolog (PTEN) signaling pathway was reported to be important in the regulation of dormancy and initial follicular activation. With these informations on early folliculogenesis, clinical application can be expected such as in vitro maturation of immature oocytes or in vitro activation of follicles by PTEN inhibitor in cryopreserved ovarian cortical tissues for fertility preservation.

Keywords

References

  1. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000;21:200-14.
  2. Elvin JA, Matzuk MM. Mouse models of ovarian failure. Rev Reprod 1998;3:183-95.
  3. Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A 2002;99:2890-4.
  4. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 2003;301:215-8.
  5. John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 2008;321:197-204.
  6. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 2008;319:611-3.
  7. Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE. Initiation in vitro of growth of bovine primordial follicles. Biol Reprod 1996;55:942-8.
  8. Wandji SA, Srsen V, Nathanielsz PW, Eppig JJ, Fortune JE. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod 1997;12:1993-2001.
  9. Dissen GA, Romero C, Paredes A, Ojeda SR. Neurotrophic control of ovarian development. Microsc Res Tech 2002;59:509-15.
  10. Spears N, Molinek MD, Robinson LL, Fulton N, Cameron H, Shimoda K, et al. The role of neurotrophin receptors in female germcell survival in mouse and human. Development 2003;130:5481-91.
  11. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 2002;87:316-21.
  12. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996;383:531-5.
  13. Kaivo-oja N, Jeffery LA, Ritvos O, Mottershead DG. Smad signalling in the ovary. Reprod Biol Endocrinol 2006;4:21.
  14. De Baere E, Beysen D, Oley C, Lorenz B, Cocquet J, De Sutter P, et al. FOXL2 and BPES: mutational hotspots, phenotypic variability, and revision of the genotype-phenotype correlation. Am J Hum Genet 2003;72:478-87.
  15. Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier AC, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 2004;131:933-42.
  16. Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci U S A 2006;103:8090-5.
  17. Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 1999;140:5789-96.
  18. Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 2002;124:601-9.
  19. Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen AP, Hovatta O. Anti-Mullerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod 2006;21:2223-7.
  20. Lan ZJ, Xu X, Cooney AJ. Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol Reprod 2004;71:1469-74.
  21. Adhikari D, Zheng W, Shen Y, Gorre N, Hamalainen T, Cooney AJ, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 2010;19:397-410.
  22. Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab 2010;21:96-103.
  23. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006;355:1345-56.
  24. Adhikari D, Flohr G, Gorre N, Shen Y, Yang H, Lundin E, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 2009;15:765-70.
  25. Junger MA, Rintelen F, Stocker H, Wasserman JD, Vegh M, Radimerski T, et al. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2003;2:20.
  26. Kezele PR, Nilsson EE, Skinner MK. Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition. Mol Cell Endocrinol 2002;192:37-43.
  27. Reddy P, Shen L, Ren C, Boman K, Lundin E, Ottander U, et al. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol 2005;281:160-70.
  28. Liu K, Rajareddy S, Liu L, Jagarlamudi K, Boman K, Selstam G, et al. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol 2006;299:1-11.
  29. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 2000;5:143-52.
  30. Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl 2003;61:49-54.
  31. Packer AI, Hsu YC, Besmer P, Bachvarova RF. The ligand of the ckit receptor promotes oocyte growth. Dev Biol 1994;161:194-205.
  32. Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 1999;140:4262-71.
  33. Blume-Jensen P, Jiang G, Hyman R, Lee KF, O'Gorman S, Hunter T. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet 2000;24:157-62.
  34. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655-7.
  35. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000;346 Pt 3:561-76.
  36. Reddy P, Adhikari D, Zheng W, Liang S, Hamalainen T, Tohonen V, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet 2009;18:2813-24.
  37. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124:471-84.
  38. Fan HY, Liu Z, Cahill N, Richards JS. Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol 2008;22:2128-40.
  39. Li J, Kawamura K, Cheng Y, Liu S, Klein C, Duan EK, et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci U S A 2010;107:10280-4.

Cited by

  1. Involvement of androgens in ovarian health and disease vol.19, pp.12, 2012, https://doi.org/10.1093/molehr/gat065
  2. Expression Patterns and Regulatory Functions of MicroRNAs During the Initiation of Primordial Follicle Development in the Neonatal Mouse Ovary1 vol.89, pp.5, 2013, https://doi.org/10.1095/biolreprod.113.107730
  3. The dynamics of the primordial follicle reserve vol.146, pp.6, 2012, https://doi.org/10.1530/rep-13-0181
  4. Roles of PI3K/AKT/PTEN Pathway as a Target for Pharmaceutical Therapy vol.7, pp.None, 2012, https://doi.org/10.2174/1874104501307010023
  5. Follicular cells of the amphibian ovary: Origin, structure, and functions vol.44, pp.5, 2012, https://doi.org/10.1134/s1062360413040024
  6. Follicle activation and ‘burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness vol.29, pp.5, 2012, https://doi.org/10.1093/humrep/deu015
  7. Connection between Tumor Suppressor BRCA1 and PTEN in Damaged DNA Repair vol.4, pp.None, 2012, https://doi.org/10.3389/fonc.2014.00318
  8. Daily Exposure to Di(2-ethylhexyl) Phthalate Alters Estrous Cyclicity and Accelerates Primordial Follicle Recruitment Potentially Via Dysregulation of the Phosphatidylinositol 3-Kinase Signaling Pathw vol.90, pp.6, 2014, https://doi.org/10.1095/biolreprod.114.119032
  9. Rictor/mTORC2 Pathway in Oocytes Regulates Folliculogenesis, and Its Inactivation Causes Premature Ovarian Failure vol.290, pp.10, 2012, https://doi.org/10.1074/jbc.m114.605261
  10. Mono(2-Ethylhexyl) Phthalate Accelerates Early Folliculogenesis and Inhibits Steroidogenesis in Cultured Mouse Whole Ovaries and Antral Follicles1 vol.92, pp.5, 2015, https://doi.org/10.1095/biolreprod.115.129148
  11. Insights into female germ cell biology: from in vivo development to in vitro derivations vol.17, pp.3, 2012, https://doi.org/10.4103/1008-682x.148077
  12. Effects of jacalin and follicle-stimulating hormone on in vitro goat primordial follicle activation, survival and gene expression vol.23, pp.4, 2012, https://doi.org/10.1017/s0967199414000173
  13. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood vol.21, pp.6, 2012, https://doi.org/10.1093/humupd/dmv037
  14. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte vol.5, pp.None, 2017, https://doi.org/10.1146/annurev-animal-022516-022849
  15. Expectations and limitations of ovarian tissue transplantation vol.25, pp.4, 2017, https://doi.org/10.1017/s0967199417000338
  16. Neonatal immune activation depletes the ovarian follicle reserve and alters ovarian acute inflammatory mediators in neonatal rats† vol.97, pp.5, 2012, https://doi.org/10.1093/biolre/iox123
  17. In vivo and in vitro strategies to support caprine preantral follicle development after ovarian tissue vitrification vol.30, pp.8, 2012, https://doi.org/10.1071/rd17315
  18. Chronic restraint stress induces excessive activation of primordial follicles in mice ovaries vol.13, pp.3, 2012, https://doi.org/10.1371/journal.pone.0194894
  19. PATL 2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice vol.10, pp.5, 2012, https://doi.org/10.15252/emmm.201708515
  20. Primordial follicle activation is affected by the absence of Sohlh1 in mice vol.86, pp.1, 2019, https://doi.org/10.1002/mrd.23078
  21. Formation and activation induction of primordial follicles using granulosa and cumulus cells conditioned media vol.234, pp.7, 2012, https://doi.org/10.1002/jcp.27681
  22. Dose optimisation of PTEN inhibitor, bpV (HOpic), and SCF for the in-vitro activation of sheep primordial follicles vol.37, pp.3, 2012, https://doi.org/10.1080/08977194.2019.1680661
  23. Kuntai capsule attenuates premature ovarian failure through the PI3K/AKT/mTOR pathway vol.239, pp.None, 2012, https://doi.org/10.1016/j.jep.2019.111885
  24. Ovarian Follicle Depletion Induced by Chemotherapy and the Investigational Stages of Potential Fertility-Protective Treatments-A Review vol.20, pp.19, 2012, https://doi.org/10.3390/ijms20194720
  25. The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-53370-4
  26. Cellular and Molecular Adaptation of Bovine Granulosa Cells and Oocytes under Heat Stress vol.10, pp.1, 2012, https://doi.org/10.3390/ani10010110
  27. Pentachloronitrobenzene alters progesterone production and primordial follicle recruitment in cultured granulosa cells and rat ovary† vol.102, pp.2, 2020, https://doi.org/10.1093/biolre/ioz195
  28. An explanation of the mechanisms underlying fragile X-associated premature ovarian insufficiency vol.37, pp.6, 2012, https://doi.org/10.1007/s10815-020-01774-x
  29. FSH/AMH Ratio and Adipocyte Size are Linked to Ovarian Dysfunction vol.45, pp.3, 2012, https://doi.org/10.1080/07435800.2020.1721015
  30. Pathways coordinating oocyte attrition and abundance during mammalian ovarian reserve establishment vol.87, pp.8, 2012, https://doi.org/10.1002/mrd.23401
  31. Incorporation of arginine, glutamine or leucine in culture medium accelerates in vitro activation of primordial follicles in 1-day-old mouse ovary vol.28, pp.5, 2012, https://doi.org/10.1017/s096719942000026x
  32. In Vitro Follicular Activation and Stem Cell Therapy as a Novel Treatment Strategies in Diminished Ovarian Reserve and Primary Ovarian Insufficiency vol.11, pp.None, 2012, https://doi.org/10.3389/fendo.2020.617704
  33. Kisspeptin regulates the development of caprine primordial follicles in vitro vol.36, pp.1, 2012, https://doi.org/10.12750/jarb.36.1.51
  34. Alpha Lipoic Acid Supplementation Improves Ovarian Tissue Vitrification Outcome: An Alternative to Preserve the Ovarian Function of Morada Nova Ewe vol.28, pp.11, 2021, https://doi.org/10.1007/s43032-021-00593-4
  35. A role for orphan nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) in primordial follicle activation vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-020-80178-4
  36. Histone deacetylase inhibition leads to regulatory histone mark alterations and impairs meiosis in oocytes vol.14, pp.1, 2021, https://doi.org/10.1186/s13072-021-00413-8