참고문헌
- Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta 2009;1796:216-29.
- Schardt D, Elsasser T, Schulz-Ertner D. Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 2010;82:383-425. https://doi.org/10.1103/RevModPhys.82.383
- Ito A, Nakano H, Kusano Y, et al. Contribution of indirect action to radiation-induced mammalian cell inactivation: dependence on photon energy and heavy-ion LET. Radiat Res 2006;165:703-12. https://doi.org/10.1667/RR3557.1
- Kanai T, Endo M, Minohara S, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys 1999;44:201-10. https://doi.org/10.1016/S0360-3016(98)00544-6
- Skarsgard LD. Radiobiology with heavy charged particles: a historical review. Phys Med 1998;14 Suppl 1:1-19.
- Ballarini F. From DNA radiation damage to cell death: theoretical approaches. J Nucleic Acids 2010;2010:350608.
- Lea DE. Actions of radiations on living cells. 2nd ed. London: Cambridge University Press; 1955.
- Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.
- Chadwick KH, Leenhouts HP. A molecular theory of cell survival. Phys Med Biol 1973;18:78-87. https://doi.org/10.1088/0031-9155/18/1/007
- Dale RG, Jones B. The assessment of RBE effects using the concept of biologically effective dose. Int J Radiat Oncol Biol Phys 1999;43:639-45. https://doi.org/10.1016/S0360-3016(98)00364-2
- ICRP. 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP 1991;21(1-3):1-201. https://doi.org/10.1016/0146-6453(91)90009-6
- ICRP. The 2007 recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP 2007;37(2-4):1-332
- Particle Therapy Co-operative Group (PTCOG). Patient statistics per end of 2010 [Internet]. PTCOG; 2011 [cited 2011 Mar 20]. Available from: http://ptcog.web.psi.ch/patient_statistics.html.
- Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 2002;53:407-21. https://doi.org/10.1016/S0360-3016(02)02754-2
- International Commission on Radiation Units and Measurements (ICRU). Prescribing, recording, and reporting protonbeam therapy. J ICRU 2007;7:1-210.
- Wambersie A. RBE, reference RBE and clinical RBE: applications of these concepts in hadron therapy. Strahlenther Onkol 1999;175 Suppl 2:39-43.
- Gueulette J, Slabbert JP, Bohm L, et al. Proton RBE for early intestinal tolerance in mice after fractionated irradiation. Radiother Oncol 2001;61:177-84. https://doi.org/10.1016/S0167-8140(01)00446-7
- Paganetti H, Gerweck LE, Goitein M. The general relation between tissue response to x-radiation (alpha/beta-values) and the relative biological effectiveness (RBE) of protons: prediction by the Katz track-structure model. Int J Radiat Biol 2000;76:985-98. https://doi.org/10.1080/09553000050051007
- Lee KB, Lee JS, Park JW, Huh TL, Lee YM. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp Mol Med 2008;40:118-29. https://doi.org/10.3858/emm.2008.40.1.118
- Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006;65:1-7. https://doi.org/10.1016/j.ijrobp.2006.01.027
- Weyrather WK, Ritter S, Scholz M, Kraft G. RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int J Radiat Biol 1999;75:1357-64. https://doi.org/10.1080/095530099139232
- Takahashi A, Yano T, Matsumoto H, et al. Effects of accelerated carbon-ions on growth inhibition of transplantable human esophageal cancer in nude mice. Cancer Lett 1998;122:181-6. https://doi.org/10.1016/S0304-3835(97)00386-8
- Kitabayashi H, Shimada H, Yamada S, et al. Synergistic growth suppression induced in esophageal squamous cell carcinoma cells by combined treatment with docetaxel and heavy carbon-ion beam irradiation. Oncol Rep 2006;15:913-8.
- Koike S, Ando K, Oohira C, et al. Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res 2002;43:247-55. https://doi.org/10.1269/jrr.43.247
- Peschke P, Karger CP, Scholz M, Debus J, Huber PE. Relative biological effectiveness of carbon ions for local tumor control of a radioresistant prostate carcinoma in the rat. Int J Radiat Oncol Biol Phys 2011;79:239-46. https://doi.org/10.1016/j.ijrobp.2010.07.1976
- Kramer M, Weyrather WK, Scholz M. The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat 2003;2:427-36. https://doi.org/10.1177/153303460300200507
- Furusawa Y, Fukutsu K, Aoki M, et al. Inactivation of aero bic and hypoxic cells from three different cell lines by accele rated (3)He-, (12)C- and (20)Ne-ion beams. Radiat Res 2000;154:485-96. https://doi.org/10.1667/0033-7587(2000)154[0485:IOAAHC]2.0.CO;2
- Kraft G. Tumor therapy with heavy charged particles. Prog Part Nucl Phys 2000;45:S473-544. https://doi.org/10.1016/S0146-6410(00)00112-5
- Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int J Radiat Oncol Biol Phys 2000;48:241-50.
- Suit H, DeLaney T, Goldberg S, et al. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol 2010;95:3-22. https://doi.org/10.1016/j.radonc.2010.01.015
- Belli M, Bettega D, Calzolari P, et al. Effectiveness of monoenergetic and spread-out bragg peak carbon-ions for inactivation of various normal and tumour human cell lines. J Radiat Res 2008;49:597-607. https://doi.org/10.1269/jrr.08052
- Schulz-Ertner D, Jakel O, Schlegel W. Radiation therapy with charged particles. Semin Radiat Oncol 2006;16:249-59. https://doi.org/10.1016/j.semradonc.2006.04.008
- Blakely EA, Chang PY. Late effects from hadron therapy. Radiother Oncol 2004;73 Suppl 2:S134-40.
- Ando K, Kase Y. Biological characteristics of carbon-ion therapy. Int J Radiat Biol 2009;85:715-28. https://doi.org/10.1080/09553000903072470
- George K, Durante M, Willingham V, et al. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiat Res 2003;160:425-35. https://doi.org/10.1667/RR3064
- Han ZB, Suzuki H, Suzuki F, et al. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells. J Radiat Res 1998;39:193-201. https://doi.org/10.1269/jrr.39.193
- Czub J, Banas D, Blaszczyk A, et al. Biological effectiveness of (12)C and (20)Ne ions with very high LET. Int J Radiat Biol 2008;84:821-9. https://doi.org/10.1080/09553000802389652
- Dale RG, Jones B, Carabe-Fernandez A. Why more needs to be known about RBE effects in modern radiotherapy. Appl Radiat Isot 2009;67:387-92. https://doi.org/10.1016/j.apradiso.2008.06.013
- Dasu A, Toma-Dasu I. What is the clinically relevant relative biologic effectiveness? a warning for fractionated treatments with high linear energy transfer radiation. Int J Radiat Oncol Biol Phys 2008;70:867-74. https://doi.org/10.1016/j.ijrobp.2007.07.2358
- Karger CP, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications. Int J Radiat Oncol Biol Phys 2006;66:1488-97. https://doi.org/10.1016/j.ijrobp.2006.08.045
- Suzuki M, Kase Y, Kanai T, Ando K. Correlation between cell killing and residual chromatin breaks measured by PCC in six human cell lines irradiated with different radiation types. Int J Radiat Biol 2000;76:1189-96. https://doi.org/10.1080/09553000050134429
- Elsasser T, Kramer M, Scholz M. Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo. Int J Radiat Oncol Biol Phys 2008;71:866-72. https://doi.org/10.1016/j.ijrobp.2008.02.037
- Uzawa A, Ando K, Koike S, et al. Comparison of biological effectiveness of carbon-ion beams in Japan and Germany. Int J Radiat Oncol Biol Phys 2009;73:1545-51. https://doi.org/10.1016/j.ijrobp.2008.12.021
- Gueulette J, Gregoire V, Octave-Prignot M, Wambersie A. Measurements of radiobiological effectiveness in the 85 MeV proton beam produced at the cyclotron CYCLONE of Louvainla-Neuve, Belgium. Radiat Res 1996;145:70-4. https://doi.org/10.2307/3579197
- Gerweck LE, Kozin SV. Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol 1999;50:135-42. https://doi.org/10.1016/S0167-8140(98)00092-9
- Blattmann H. Beam delivery systems for charged particles. Radiat Environ Biophys 1992;31:219-31. https://doi.org/10.1007/BF01214829
- Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy: the model and its approximation. Radiat Environ Biophys 1997;36:59-66. https://doi.org/10.1007/s004110050055
- Baek HJ, Kim TH, Shin D, et al. Radiobiological characterization of proton beam at the National Cancer Center in Korea. J Radiat Res 2008;49:509-15. https://doi.org/10.1269/jrr.08017
- Kim SS, Choo DW, Shin D, et al. In vivo radiobiological characterization of proton beam at the National Cancer Center in Korea: effect of the Chk2 mutation. Int J Radiat Oncol Biol Phys 2011;79:559-62. https://doi.org/10.1016/j.ijrobp.2010.08.010
피인용 문헌
- Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch vol.7, pp.None, 2012, https://doi.org/10.1186/1754-6834-7-22
- The study of hyaluronic acid compounds for neutron capture and photon activation therapies vol.9, pp.10, 2012, https://doi.org/10.2478/s11535-014-0329-7
- Effects of Ion Irradiation on Seedlings Growth Monitored by Ultraweak Delayed Luminescence vol.11, pp.12, 2012, https://doi.org/10.1371/journal.pone.0167998
- Development of Program for Relative Biological Effectiveness (RBE) Analysis of Particle Beam Therapy vol.28, pp.1, 2012, https://doi.org/10.14316/pmp.2017.28.1.11
- Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread-out-Bragg-peaks in light ion beam therapy vol.45, pp.5, 2012, https://doi.org/10.1002/mp.12866
- Characterization of a MLIC Detector for QA in Scanned Proton and Carbon Ion Beams vol.6, pp.2, 2012, https://doi.org/10.14338/ijpt-19-00064.1
- Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer vol.12, pp.1, 2020, https://doi.org/10.3390/cancers12010163
- SRC Tyrosine Kinase Inhibitor and X-rays Combined Effect on Glioblastoma Cell Lines vol.21, pp.11, 2012, https://doi.org/10.3390/ijms21113917
- A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines vol.96, pp.11, 2012, https://doi.org/10.1080/09553002.2020.1820609
- Particle Therapy for Breast Cancer: Benefits and Challenges vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.662826
- DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time vol.97, pp.9, 2021, https://doi.org/10.1080/09553002.2021.1948140