References
- A. Capietto & Z. Wang: Periodic solutions of Lienard equations with asymmetric nonlinearities at resonance. J. London Math. Soc. 68 (2003), no. 2, 119-132. https://doi.org/10.1112/S0024610703004459
- Y. Li & L. Huang: New results of periodic solutions for forced rayleigh-type equations. J. Comput. Appl. Math. 221 (2008), 98-105. https://doi.org/10.1016/j.cam.2007.10.005
- S. Lu & W. Ge: Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear analysis: TAM 56 (2004), 501-514. https://doi.org/10.1016/j.na.2003.09.021
- S. Lu & Z. Gui: On the existence of periodic solutions to p-Laplacian rayleigh differential equations with a delay. J. Math. Anal. Appl. 325 (2007), 685-702. https://doi.org/10.1016/j.jmaa.2006.02.005
- R. Manasevich & J. Mawhin: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Diff. Equations 145 (1998), 367-393. https://doi.org/10.1006/jdeq.1998.3425
- L. Wang & J. Shao: New results of periodic solutions for a kind of forced rayleigh-type equations. Nonlinear Analysis : RWA 11 (2010), 99-105. https://doi.org/10.1016/j.nonrwa.2008.10.018
- Y. Wang: Novel existence and uniqueness criteria for periodic solutions of a Duffing type p-Laplacian equation. Appl. Math. Lett. 23 (2010), 436-439. https://doi.org/10.1016/j.aml.2009.11.013
- F. Zhang & Y. Li: Existence and uniqueness of periodic solutions for a kind of Duffing type p-Laplacian equation. Nonlinear Anal. RWA 9 (2008), 985-989. https://doi.org/10.1016/j.nonrwa.2007.01.013
- M. Zong & H. Liang: Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments. Appl. Math. Lett. 12 (1999), 41-44. https://doi.org/10.1016/S0893-9659(98)00169-4
- X. Yang, Y. Kim & K. Lo: Periodic solutions for a generalized p-Laplacian equation. Appl. Math. Lett. 25 (2011), 586-589.