DOI QR코드

DOI QR Code

EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A CLASS OF p-LAPLACIAN EQUATIONS

  • Received : 2011.11.16
  • Accepted : 2012.04.03
  • Published : 2012.05.31

Abstract

The existence and uniqueness of T-periodic solutions for the following p-Laplacian equations: $$({\phi}_p(x^{\prime}))^{\prime}+{\alpha}(t)x^{\prime}+g(t,x)=e(t),\;x(0)=x(T),x^{\prime}(0)=x^{\prime}(T)$$ are investigated, where ${\phi}_p(u)={\mid}u{\mid}^{p-2}u$ with $p$ > 1 and ${\alpha}{\in}C^1$, $e{\in}C$ are T-periodic and $g$ is continuous and T-periodic in $t$. By using coincidence degree theory, some existence and uniqueness results are obtained.

Keywords

References

  1. A. Capietto & Z. Wang: Periodic solutions of Lienard equations with asymmetric nonlinearities at resonance. J. London Math. Soc. 68 (2003), no. 2, 119-132. https://doi.org/10.1112/S0024610703004459
  2. Y. Li & L. Huang: New results of periodic solutions for forced rayleigh-type equations. J. Comput. Appl. Math. 221 (2008), 98-105. https://doi.org/10.1016/j.cam.2007.10.005
  3. S. Lu & W. Ge: Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear analysis: TAM 56 (2004), 501-514. https://doi.org/10.1016/j.na.2003.09.021
  4. S. Lu & Z. Gui: On the existence of periodic solutions to p-Laplacian rayleigh differential equations with a delay. J. Math. Anal. Appl. 325 (2007), 685-702. https://doi.org/10.1016/j.jmaa.2006.02.005
  5. R. Manasevich & J. Mawhin: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Diff. Equations 145 (1998), 367-393. https://doi.org/10.1006/jdeq.1998.3425
  6. L. Wang & J. Shao: New results of periodic solutions for a kind of forced rayleigh-type equations. Nonlinear Analysis : RWA 11 (2010), 99-105. https://doi.org/10.1016/j.nonrwa.2008.10.018
  7. Y. Wang: Novel existence and uniqueness criteria for periodic solutions of a Duffing type p-Laplacian equation. Appl. Math. Lett. 23 (2010), 436-439. https://doi.org/10.1016/j.aml.2009.11.013
  8. F. Zhang & Y. Li: Existence and uniqueness of periodic solutions for a kind of Duffing type p-Laplacian equation. Nonlinear Anal. RWA 9 (2008), 985-989. https://doi.org/10.1016/j.nonrwa.2007.01.013
  9. M. Zong & H. Liang: Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments. Appl. Math. Lett. 12 (1999), 41-44. https://doi.org/10.1016/S0893-9659(98)00169-4
  10. X. Yang, Y. Kim & K. Lo: Periodic solutions for a generalized p-Laplacian equation. Appl. Math. Lett. 25 (2011), 586-589.