References
- R.A. Ewan: Then Cameron-Storvick operator-valued function space integrals for a class of finite-dimensional functionals. Thesis, University of Nebraska, 1973.
- H.H. Bang: Functions with bounded spectrum. Trans. Amer. Math. Soc. 347 (1995), 1067-1080. https://doi.org/10.1090/S0002-9947-1995-1283539-1
-
R.H. Cameron & W.T. Martin: Fourier-Wiener transforms of analytic functionals belonging to
$L_2$ over the space C Duke Math. J. 14 (1947), 99-107. https://doi.org/10.1215/S0012-7094-47-01409-9 - R.H. Cameron & W.T. Martin: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. of Math. 48 (1947), 385-392. https://doi.org/10.2307/1969178
-
R.H. Cameron & D.A. Storvick: An
$L_2$ analytic Fourier-Feynman transform Michigan Math. J. 23 (1976), 1-30. https://doi.org/10.1307/mmj/1029001617 - R.H. Cameron & D.A. Storvick: Feynman integral of variation of functionals. in: Gaussian Random Fields, World Scientific, Singapore, 1980, 144-157.
- R.H. Cameron & D.A. Storvick: Some Banach algebras of analytic Feynman integrable functionals. in: Analytic Functions, Kozubnik, 1979, Lecture Notes in Math. 798 Springer-Verlag, Berlin, 1980, 18-67.
- R.H. Cameron & W.T. Martin: Relationships between the Wiener integral and the analytic Feynman integral. Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 117-133.
- R.P. Feynman: Space-time approach to non-relativistic quantum mechanics. Rev. Modern Phys. 20 (1948), 115-142.
- S.J. Chang, J.G. Choi & D. Skoug: Evaluation Formulas for Conditional Function Space Integrals I. Stochastic Analysis and Applications 25 (2007), 141-168. https://doi.org/10.1080/07362990601052185
- S.J. Chang & H.S. Chung: Generalized Fourier-Wiener function space transforms. J. Korean Math. Soc. 46 (2009), 327-345. https://doi.org/10.4134/JKMS.2009.46.2.327
-
S.J. Chang, H.S. Chung & D. Skoug: Convolution products, integral transforms and inverse integral transforms of functionals in
$L_2(C_0[0,T])$ . Integral Transforms Spec. Funct. 21 (2010), 143-151. https://doi.org/10.1080/10652460903063382 -
S.J. Chang, H.S. Chung & D. Skoug: Integral transforms of functionals in
$L^2(C_{a,b}[0,T])$ . J. Four. Anal. Appl. 15 (2009), 441-462. https://doi.org/10.1007/s00041-009-9076-y - D.M. Chung & S.J. Kang: Evaluation formulas for conditional abstract Wiener integrals. Stochastic Analysis and Applications 7 (1989), 125-144. https://doi.org/10.1080/07362998908809173
- D.M. Chung & S.J. Kang: Evaluation formulas for conditional abstract Wiener integrals II. J. Korean Math. Soc. 27 (1990), 137-144.
- H.S. Chung & V.K. Tuan: Fourier-type functionals on Wiener space. to appear in the Bull. Korean Math. Soc.
- H.S. Chung & V.K. Tuan: Generalized integral transforms and convolution products on function space. Integral Transforms Spec. Funct. 22 (2011), 573-586. https://doi.org/10.1080/10652469.2010.535798
-
H.S. Chung & V.K. Tuan: A sequential analytic Feynman integral of functionals in
$L_2(C_0[0,T])$ . to appear in the Integral Transforms Spec. Funct. - G.W. Johnson & D.L. Skoug: Scale-invariant measurability in Wiener space. Pacific J. Math. 83 (1979), 157-176. https://doi.org/10.2140/pjm.1979.83.157
- H.-H. Kuo: Gaussian Measure in Banach Space. Lecture Notes in Mathematics 463 Springer, Berlin.
- V.K. Tuan: On the Paley-Wiener theorem. Theory of Functions and Applications. Collection of Works Dedicated to the Memory of Mkhitar M. Djrbashian. Yerevan, Louys Publishing House (1995), 193-196.
- V.K. Tuan: Paley-Wiener type theorems. Frac. Calc. Appl. Anal. 2 (1999), 135-143.