DOI QR코드

DOI QR Code

SERIES EXPANSIONS OF THE ANALYTIC FEYNMAN INTEGRAL FOR THE FOURIER-TYPE FUNCTIONAL

  • Received : 2011.11.15
  • Accepted : 2012.04.25
  • Published : 2012.05.31

Abstract

In this paper, we consider the Fourier-type functionals introduced in [16]. We then establish the analytic Feynman integral for the Fourier-type functionals. Further, we get a series expansion of the analytic Feynman integral for the Fourier-type functional $[{\Delta}^kF]^{\^}$. We conclude by applying our series expansion to several interesting functionals.

Keywords

References

  1. R.A. Ewan: Then Cameron-Storvick operator-valued function space integrals for a class of finite-dimensional functionals. Thesis, University of Nebraska, 1973.
  2. H.H. Bang: Functions with bounded spectrum. Trans. Amer. Math. Soc. 347 (1995), 1067-1080. https://doi.org/10.1090/S0002-9947-1995-1283539-1
  3. R.H. Cameron & W.T. Martin: Fourier-Wiener transforms of analytic functionals belonging to $L_2$ over the space C Duke Math. J. 14 (1947), 99-107. https://doi.org/10.1215/S0012-7094-47-01409-9
  4. R.H. Cameron & W.T. Martin: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. of Math. 48 (1947), 385-392. https://doi.org/10.2307/1969178
  5. R.H. Cameron & D.A. Storvick: An $L_2$ analytic Fourier-Feynman transform Michigan Math. J. 23 (1976), 1-30. https://doi.org/10.1307/mmj/1029001617
  6. R.H. Cameron & D.A. Storvick: Feynman integral of variation of functionals. in: Gaussian Random Fields, World Scientific, Singapore, 1980, 144-157.
  7. R.H. Cameron & D.A. Storvick: Some Banach algebras of analytic Feynman integrable functionals. in: Analytic Functions, Kozubnik, 1979, Lecture Notes in Math. 798 Springer-Verlag, Berlin, 1980, 18-67.
  8. R.H. Cameron & W.T. Martin: Relationships between the Wiener integral and the analytic Feynman integral. Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 117-133.
  9. R.P. Feynman: Space-time approach to non-relativistic quantum mechanics. Rev. Modern Phys. 20 (1948), 115-142.
  10. S.J. Chang, J.G. Choi & D. Skoug: Evaluation Formulas for Conditional Function Space Integrals I. Stochastic Analysis and Applications 25 (2007), 141-168. https://doi.org/10.1080/07362990601052185
  11. S.J. Chang & H.S. Chung: Generalized Fourier-Wiener function space transforms. J. Korean Math. Soc. 46 (2009), 327-345. https://doi.org/10.4134/JKMS.2009.46.2.327
  12. S.J. Chang, H.S. Chung & D. Skoug: Convolution products, integral transforms and inverse integral transforms of functionals in $L_2(C_0[0,T])$. Integral Transforms Spec. Funct. 21 (2010), 143-151. https://doi.org/10.1080/10652460903063382
  13. S.J. Chang, H.S. Chung & D. Skoug: Integral transforms of functionals in $L^2(C_{a,b}[0,T])$. J. Four. Anal. Appl. 15 (2009), 441-462. https://doi.org/10.1007/s00041-009-9076-y
  14. D.M. Chung & S.J. Kang: Evaluation formulas for conditional abstract Wiener integrals. Stochastic Analysis and Applications 7 (1989), 125-144. https://doi.org/10.1080/07362998908809173
  15. D.M. Chung & S.J. Kang: Evaluation formulas for conditional abstract Wiener integrals II. J. Korean Math. Soc. 27 (1990), 137-144.
  16. H.S. Chung & V.K. Tuan: Fourier-type functionals on Wiener space. to appear in the Bull. Korean Math. Soc.
  17. H.S. Chung & V.K. Tuan: Generalized integral transforms and convolution products on function space. Integral Transforms Spec. Funct. 22 (2011), 573-586. https://doi.org/10.1080/10652469.2010.535798
  18. H.S. Chung & V.K. Tuan: A sequential analytic Feynman integral of functionals in $L_2(C_0[0,T])$. to appear in the Integral Transforms Spec. Funct.
  19. G.W. Johnson & D.L. Skoug: Scale-invariant measurability in Wiener space. Pacific J. Math. 83 (1979), 157-176. https://doi.org/10.2140/pjm.1979.83.157
  20. H.-H. Kuo: Gaussian Measure in Banach Space. Lecture Notes in Mathematics 463 Springer, Berlin.
  21. V.K. Tuan: On the Paley-Wiener theorem. Theory of Functions and Applications. Collection of Works Dedicated to the Memory of Mkhitar M. Djrbashian. Yerevan, Louys Publishing House (1995), 193-196.
  22. V.K. Tuan: Paley-Wiener type theorems. Frac. Calc. Appl. Anal. 2 (1999), 135-143.