DOI QR코드

DOI QR Code

A Forecast Model for the First Occurrence of Phytophthora Blight on Chili Pepper after Overwintering

  • Do, Ki-Seok (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kang, Wee-Soo (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Eun-Woo (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2012.04.05
  • Accepted : 2012.05.14
  • Published : 2012.06.01

Abstract

An infection risk model for Phytophthora blight on chili pepper was developed to estimate the first date of disease occurrence in the field. The model consisted of three parts including estimation of zoosporangium formation, soil water content, and amount of active inoculum in soil. Daily weather data on air temperature, relative humidity and rainfall, and the soil texture data of local areas were used to estimate infection risk level that was quantified as the accumulated amount of active inoculum during the prior three days. Based on the analysis on 190 sets of weather and disease data, it was found that the threshold infection risk of 224 could be an appropriate criterion for determining the primary infection date. The 95% confidence interval for the difference between the estimated date of primary infection and the observed date of first disease occurrence was $8{\pm}3$ days. In the model validation tests, the observed dates of first disease occurrence were within the 95% confidence intervals of the estimated dates in the five out of six cases. The sensitivity analyses suggested that the model was more responsive to temperature and soil texture than relative humidity, rainfall, and transplanting date. The infection risk model could be implemented in practice to control Phytophthora blight in chili pepper fields.

Keywords

References

  1. Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements-irrigation and drainage paper No. 56. United Nations FAO, Rome, Italy. 326 pp.
  2. Baker, R. 1978. Inoculum potential. In: Plant disease. An advanced treatise, vol. 2., ed. by J. G. Horsfall and E. B. Cowling, pp. 137-156. Academic Press, New York, USA.
  3. Bashi, E., Ben-Joseph, Y. and Rotem, J. 1982. Inoculum potential of Phytophthora infestans and the development of potato late blight epidemics. Phytopathology 72:1043-1047. https://doi.org/10.1094/Phyto-72-1043
  4. Bernhardt, E. A. and Grogan, R. G. 1982. Effect of soil matric potential on the formation and indirect germination of sporangia of Phytophthora parasitica, Phytophthora capsici, and Phytophthora cryptogea. Phytopathology 72:507-511. https://doi.org/10.1094/Phyto-72-507
  5. Bowers, J. H. and Mitchell, D. J. 1990. Effect of soil-water matric potential and periodic flooding on the mortality of pepper caused by Phytophthora capsici. Phytopathology 80:1447-1450. https://doi.org/10.1094/Phyto-80-1447
  6. Bowers, J. H. and Mitchell, D. J. 1991. Relationship between inoculum level of Phytophthora capsici and mortality of pepper. Phytopathology 81:178-184. https://doi.org/10.1094/Phyto-81-178
  7. Bowers, J. H., Papavizas, G. C. and Johnston, S. A. 1990. Effect of soil temperature and soil water matric potential on the survival of Phytophthora capsici in natural soil. Plant Dis. 74:771-777. https://doi.org/10.1094/PD-74-0771
  8. Brady, N. C. 1990. The nature and properties of soils, 10th ed. Macmillan Publishing Company, New York, USA. 621 pp.
  9. Brasier, C. M. 1969. The effect of light and temperature on reproduction in vitro in two tropical species of Phytophthora. Trans. Br. Mycol. Soc. 52:105-113. https://doi.org/10.1016/S0007-1536(69)80164-6
  10. Caf-Filho, A. C. and Duniway, J. M. 1995. Effects of furrow irrigation schedules and host genotype on Phytophthora root rot of pepper. Plant Dis. 79:39-43. https://doi.org/10.1094/PD-79-0039
  11. Campbell, G. S. 1985. Soil Physics with BASIC: Transport Models for Soil-Plant Systems. Elsevier, Amsterdam, Netherlands. 150 pp.
  12. Cronshey, R., McCuen, R. H., Miller, N., Rawls, W., Robbins, S., and Woodward, D. 1986. Urban hydrology for small watersheds. National Resources Conservation Service, USDA, Washington, DC, USA. 160 pp.
  13. Crosier, W. 1934. Studies in the biology of Phytophthora infestans de Bary. Cornell Univ. Agric. Exp. Stn. Mem. 155. Cornell University, Ithaca, USA. 40 pp.
  14. De Wolf, E. D. and Isard, S. A. 2007. Disease cycle approach to plant disease prediction. Annu. Rev. Phytopathol. 45:203-220. https://doi.org/10.1146/annurev.phyto.44.070505.143329
  15. Duniway, J. M. 1975. Limiting influence of low water potential on formation of sporangia by Phytophthora drechsleri in soil. Phytopathology 65:1089-1093. https://doi.org/10.1094/Phyto-65-1089
  16. Duniway, J. M. 1976. Movement of zoospores of Phytophthora cryptogea in soil of various textures and matric potentials. Phytopathology 66:877-882. https://doi.org/10.1094/Phyto-66-877
  17. Duniway, J. M. 1979. Water relations of water molds. Annu. Rev. Phytopathol. 17:431-460. https://doi.org/10.1146/annurev.py.17.090179.002243
  18. Dvinagracia, G. G. 1969. Sporangial and oospore formation by Phytophthora capsici. Philipp. Agric. 53:148-165.
  19. Englander, L. and Roth, L. F. 1980. Interaction of light and sterol on sporangium and chlamydospore production by Phytophthora lateralis. Phytopathology 70:650-654. https://doi.org/10.1094/Phyto-70-650
  20. Erwin, D. C., Bartnicki-Garcia, S. and Tsao, P. H. 1983. Phytophthora: Its biology, taxonomy, ecology, and pathology. American Phytopathology Society, St. Paul, Minnesota, USA. 392 pp.
  21. Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora diseases worldwide. APS Press, St. Paul, Minnesota, USA. 592 pp.
  22. Geypens, M. 1974. Inoculum potential of soil-borne plant pathogenic fungi: Problems encountered in analysis and significance in epidemiology. Agro-Ecosystems 1:177-192. https://doi.org/10.1016/0304-3746(74)90025-0
  23. Granke, L. L. and Hausbeck, M. K. 2010. Effects of temperature, concentration, age, and algaecides on Phytophthora capsici zoospore infectivity. Plant Dis. 94:54-60. https://doi.org/10.1094/PDIS-94-1-0054
  24. Hasegawa, S., Kasubuchi, T. and Miyazaki, T. 2006. Water regimes in fields with vegetation. In: Water flow in soils, ed. by T. Miyazaki, pp. 301-350. CRC Press, Boca Raton, FL., USA.
  25. Hausbeck, M. K. and Lamour, K. H. 2004. Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Dis. 88:1292-1303. https://doi.org/10.1094/PDIS.2004.88.12.1292
  26. Hong, S. Y., Zhang, Y. S., Hyun, B. K., Sonn, K. Y., Kim, Y. H., Jung, S. J., Park, C. W., Song, K. C., Jang, B. C., Choe, E. Y., Lee, Y. J., Ha, S. K., Kim, M. S., Lee, J. S., Jung, G. B., Ko, B. G. and Kim, G. Y. 2009. An introduction of Korean soil information system. Kor. J. Soil Sci. Fert. (in Korean) 42:21-28.
  27. Hord, M. J. and Ristaino, J. B. 1992. Effect of the matric component of soil water potential on infection of pepper seedlings in soil infested with oospores of Phytophthora capsici. Phytopathology 82:792-798. https://doi.org/10.1094/Phyto-82-792
  28. Hur, Y. S. 2002. In vivo study of infection process and development of stem and root rot disease in Capsicum annuum by fungal pathogen Phytophthora capsici L. MS. thesis. Seoul National University, Seoul, Korea.
  29. Hwang, B. K. and Kim, B. S. 1995. In-vivo efficacy and in-vitro activity of tubercidin, an antibiotic nucleoside, for control of Phytophthora capsici blight in Capsicum annuum. Pestic. Sci. 44:255-260. https://doi.org/10.1002/ps.2780440308
  30. Hwang, E. H. and Lee, S. G. 2001. A forecasting model of Phytophthora blight incidence in red pepper and its computer system. Kor. J. Agric. Forest Meteorol. (in Korean) 3:16-21.
  31. Jee, H. J., Cho, W. D. and Kim, C. H. 2000. Phytophthora diseases in Korea. National Institute of Agricultural Science and Technology, Suwon, Korea. 226 pp.
  32. Jung, H. W. 2005. Estimation of crop water requirement in Korea. College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea. 168 pp.
  33. Jung, H. W., Park, S. H., Lee, N. H., Kim, S. J., Choi, J. Y. and Park, G. U. 2000. Computer model for irrigation and drainage. Seonggyunsa, Seoul, Korea. 254 pp.
  34. Kang, H. J., Jeong, K. H., Ann, K. S., Han, C. U., Kim, S. H. and Kim, Y. G. 2011. Damage analysis and estimation of control thresholds for Phytophthora blight of hot pepper (Capsicum annuum). Res. Plant Dis. (in Korean) 17:1-12. https://doi.org/10.5423/RPD.2011.17.1.001
  35. Kang, W. S., Hong, S. S., Han, Y. K., Kim, K. R., Kim, S. G. and Park, E. W. 2010. A web-based information system for plant disease forecast based on weather data at high spatial resolution. Plant Pathol. J. 26:37-48. https://doi.org/10.5423/PPJ.2010.26.1.037
  36. Katsura, K. 1971. Some ecological studies on zoospore of Phytophthora capsici Leonian. Rev. Plant Prot. Res. 4:58-70.
  37. Kim, G. S., Park, C. S. and Choi, J. S. 1985. Effects of inoculum density, plant age and temperature on the incidence of crown rot of pepper caused by Phytophthora capsici. Kor. J. Plant Prot. (in Korean) 24:117-121.
  38. Kim, H. S., Sang, M. K., Jeun, Y. C., Hwang, B. K. and Kim, K. D. 2008. Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot. 27:463-443.
  39. Kim, Y. J., Hwang, B. K. and Park, K. W. 1989. Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis. 73:745-747. https://doi.org/10.1094/PD-73-0745
  40. Kreutzer, W. A., Bodine, E. W. and Durrell, L. W. 1940. Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology 30:972-976.
  41. Larkin, R. P., Gumpertz, M. L. and Ristaino, J. B. 1995. Geostatistical analysis of Phytophthora epidemic development in commercial bell pepper fields. Phytopathology 85:191-203. https://doi.org/10.1094/Phyto-85-191
  42. Lockwood, J. L. 1988. Evolution of concepts associated with soilborne plant pathogens. Annu. Rev. Phytopathol. 26:93-121. https://doi.org/10.1146/annurev.py.26.090188.000521
  43. Magarey, R. D., Sutton, T. B. and Thayer, C. L. 2005. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95:92-100. https://doi.org/10.1094/PHYTO-95-0092
  44. Ponce, V. M. and Hawkins, R. H. 1996. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1:11-19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)
  45. Ristaino, J. B. and Johnston, S. A. 1999. Ecological based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 80:1080-1089.
  46. Ristaino, J. B., Larkin, R. P. and Campbell, C. L. 1993. Spatial and temporal dynamics of Phytophthora capsici in commercial bell pepper fields. Phytopathology 83:1312-1320. https://doi.org/10.1094/Phyto-83-1312
  47. Rohlf, F. J. and Sokal, R. R. 1969. Statistical Tables. W. H. Freeman and Company, San Francisco, USA. 253 pp.
  48. Sang, M. K., Chun, S. C. and Kim, K. D. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Cont. 46:424-433. https://doi.org/10.1016/j.biocontrol.2008.03.017
  49. SAS Institute Inc. 2011a. Base SAS 9.3 Procedure Guide: Statistical Procedures. Cary, NC: SAS Institute Inc.
  50. SAS Institute Inc. 2011b. SAS/STAT 9.3 User's Guide. Cary, NC:SAS Institute Inc.
  51. Shapiro, S. S. and Wilk, M. B. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591-611. https://doi.org/10.1093/biomet/52.3-4.591
  52. Shiozawa, S. and Campbell, G. S. 1991. On the calculation of mean particle diameter and standard deviation from sand, silt, and clay fractions. Soil Sci. 152:427-431. https://doi.org/10.1097/00010694-199112000-00004
  53. Singh, V. P. 1988. Hydrologic systems, vol. 2. Watershed modeling. Prentice Hall, Englewood Cliffs, New Jersey, USA. 448 pp.
  54. Stack, R. W. 1989. A comparison of the inoculum potential of ascospores and conidia of Gibberella zeae. Can. J. Plant Pathol. 11:137-142. https://doi.org/10.1080/07060668909501128
  55. Wills, W. H. 1954. Sporangium formation of Phytophthora parasitica Dastur var. nicotianae (Breda de Hann) Tucker. J. Elisha Mitchell Sci. Soc. 70:235-243.
  56. Yun, J. I., Yi, D. S., Choi, S. I., Park, E. W. and Hwang, H. 1999. Elevation-corrected spatial interpolation for near-real time generation of meteorological surfaces from point observations. AgroInformatics J. (in Korean) 1:28-33.
  57. Zadoks, J. C. and Rabbinge, R. 1985. Modeling to a purpose. In: Advances in plant pathology, vol. 3. Mathematical modelling of crop disease, ed. by G. A. Gilligan, pp. 231-244. Academic Press, Orlando, USA.

Cited by

  1. Projections of Future Summer Weather in Seoul and Their Impacts on Urban Agriculture vol.17, pp.2, 2015, https://doi.org/10.5532/KJAFM.2015.17.2.182
  2. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro vol.17, pp.4, 2016, https://doi.org/10.1631/jzus.B1500243
  3. Development of a Forecasting Model for Bacterial Wilt in Hot Pepper vol.18, pp.4, 2012, https://doi.org/10.5423/RPD.2012.18.4.361