DOI QR코드

DOI QR Code

Treatment of Malignant Melanoma by Downregulation of XIAP and Overexpression of TRAIL with a Conditionally Replicating Oncolytic Adenovirus

  • Li, Xin-Qiu (Department of Thyroid and Mammary Gland, Renmin Hospital, Hubei University of Medicine) ;
  • Ke, Xian-Zhu (Department of Thyroid and Mammary Gland, Renmin Hospital, Hubei University of Medicine) ;
  • Wang, Yu-Ming (Department of Thyroid and Mammary Gland, Renmin Hospital, Hubei University of Medicine)
  • Published : 2012.04.30

Abstract

Background and Aim: Currently available systemic therapies for malignant melanoma produce low response rates in patients, and more effective treatment modalities are clearly needed. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand has a significant impact on therapy for patients with X-linked inhibitor of apoptosis protein-downregulation malignant melanoma. The primary objective of this study was to assess its therapeutic potential. Materials and Methods: We employed a conditionally replicating oncolytic adenoviral vector, named CRAd5.TRAIL/siXIAP, with the characteristics of over-expression of the therapeutic gene TRAIL and downregulation of XIAP in one vector. B16F10-luc cells were employed to detect anti-tumor activity of CRAd5.TRAIL/siXIAP in vitro and in vivo. Results: CRAd5.TRAIL/siXIAP enhanced caspase-8 activation and caspase-3 maturation in B16F10 cells in vitro. Furthermore, it more effectively infected and killed melanoma cells in vitro and in vivo than other adenoviruses. Conclusion: Taken together, the combination of upregulation of TRAIL and downregulation of siXIAP with one oncolytic adenoviral vector holds promise for development of an effective therapy for melanomas and other common cancers.

Keywords

References

  1. Addison CL, Bramson JL, Hitt MM, et al (1998). Intratumoral coinjection of adenoviral vectors expressing IL-2 and IL-12 results in enhanced frequency of regression of injected and untreated distal tumors. Gene Ther, 5, 1400-9. https://doi.org/10.1038/sj.gt.3300731
  2. Alemany R (2007). Cancer selective adenoviruses. Mol Aspects Med, 28, 42-58. https://doi.org/10.1016/j.mam.2006.12.002
  3. Anderson RD, Haskell RE, Xia H, et al (2000). A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther, 7, 1034-8. https://doi.org/10.1038/sj.gt.3301197
  4. Bellew S, Del Rosso JQ, Kim GK (2009). Skin cancer in asians: part 2: melanoma. J Clin Aesthet Dermatol, 2, 34-6.
  5. Bischoff JR, Kirn DH, Williams A, et al (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 274, 373-6. https://doi.org/10.1126/science.274.5286.373
  6. Debatin KM (1997). Cytotoxic drugs, programmed cell death, and the immune system: defining new roles in an old play. J Natl Cancer Inst, 89, 750-1. https://doi.org/10.1093/jnci/89.11.750
  7. Douglas JT (2007). Adenoviral vectors for gene therapy. Mol Biotechnol, 36, 71-80. https://doi.org/10.1007/s12033-007-0021-5
  8. El-Serag HB, Rudolph KL (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 132, 2557-76. https://doi.org/10.1053/j.gastro.2007.04.061
  9. Ghosh SS, Gopinath P, Ramesh A (2006). Adenoviral vectors: a promising tool for gene therapy. Appl Biochem Biotechnol, 133, 9-29. https://doi.org/10.1385/ABAB:133:1:9
  10. Gross A, McDonnell JM, Korsmeyer SJ (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 13, 1899-911. https://doi.org/10.1101/gad.13.15.1899
  11. Hall MA, Cleveland JL (2007). Clearing the TRAIL for Cancer Therapy. Cancer Cell, 12, 4-6. https://doi.org/10.1016/j.ccr.2007.06.011
  12. Harlin H, Reffey SB, Duckett CS, et al (2001). Characterization of XIAP-deficient mice. Mol Cell Biol, 21, 3604-8. https://doi.org/10.1128/MCB.21.10.3604-3608.2001
  13. Haviv YS (2009). A simplified in vitro ligation approach to clone an E1B55k-deleted double-targeted conditionally-replicative adenovirus. Virol J, 6, 18. https://doi.org/10.1186/1743-422X-6-18
  14. Heise C, Sampson-Johannes A, Williams A, et al (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med, 3, 639-45. https://doi.org/10.1038/nm0697-639
  15. Hermiston TW, Kuhn I (2002). Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther, 9, 1022-35. https://doi.org/10.1038/sj.cgt.7700542
  16. Holcik M, Korneluk RG (2001). XIAP, the guardian angel. Nat Rev Mol Cell Biol, 2, 550-6. https://doi.org/10.1038/35080103
  17. Holcik M, Yeh C, Korneluk RG, et al (2000). Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene, 19, 4174-7. https://doi.org/10.1038/sj.onc.1203765
  18. Holoch PA, Griffith TS (2009). TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol, 625, 63-72. https://doi.org/10.1016/j.ejphar.2009.06.066
  19. Huang X, Lin T, Gu J, et al (2002). Combined TRAIL and Bax gene therapy prolonged survival in mice with ovarian cancer xenograft. Gene Ther, 9, 1379-86. https://doi.org/10.1038/sj.gt.3301810
  20. Huang Y, Sheikh MS (2007). TRAIL death receptors and cancer therapeutics. Toxicol Appl Pharmacol, 224, 284-9. https://doi.org/10.1016/j.taap.2006.12.007
  21. Huerta-Yepez S, Vega M, Jazirehi A, et al (2004). Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene, 23, 4993-5003. https://doi.org/10.1038/sj.onc.1207655
  22. Hunter AM, LaCasse EC, Korneluk RG (2007). The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis, 12, 1543-68. https://doi.org/10.1007/s10495-007-0087-3
  23. Jiang H, Conrad C, Fueyo J, et al (2003). Oncolytic adenoviruses for malignant glioma therapy. Front Biosci, 8, d577-88. https://doi.org/10.2741/923
  24. Kaufmann SH and Earnshaw WC (2000). Induction of apoptosis by cancer chemotherapy. Exp Cell Res, 256, 42-49. https://doi.org/10.1006/excr.2000.4838
  25. Khuri FR, Nemunaitis J, Ganly I, et al (2000). a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med, 6, 879-885. https://doi.org/10.1038/78638
  26. Kirn D, Martuza RL, Zwiebel J (2001). Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med, 7, 781-7. https://doi.org/10.1038/89901
  27. Mahalingam D, Oldenhuis CN, Szegezdi E, et al (2011). Targeting trail towards the clinic. Curr Drug Targets, 12, 2079-90. https://doi.org/10.2174/138945011798829357
  28. McManus DC, Lefebvre CA, Cherton-Horvat G, et al (2004). Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene, 23, 8105-17. https://doi.org/10.1038/sj.onc.1207967
  29. Mitry RR, Mansour MR, Havlik R, et al (2000). Gene therapy for liver tumours. Adv Exp Med Biol, 465, 193-205.
  30. Opyrchal M, Aderca I, Galanis E (2009). Phase I clinical trial of locoregional administration of the oncolytic adenovirus ONYX-015 in combination with mitomycin-C, doxorubicin, and cisplatin chemotherapy in patients with advanced sarcomas. Methods Mol Biol, 542, 705-17. https://doi.org/10.1007/978-1-59745-561-9_35
  31. Rosato RR, Dai Y, Almenara JA, et al (2004). Potent antileukemic interactions between flavopiridol and TRAIL/Apo2L involve flavopiridol-mediated XIAP downregulation. Leukemia, 18, 1780-8. https://doi.org/10.1038/sj.leu.2403491
  32. Ruiz J, Qian C, Drozdzik M, et al (1999). Gene therapy of viral hepatitis and hepatocellular carcinoma. J Viral Hepat, 6, 17-34. https://doi.org/10.1046/j.1365-2893.1999.6120136.x
  33. Sharma A, Tandon M, Bangari DS, et al (2009). Adenoviral vector-based strategies for cancer therapy. Curr Drug Ther, 4, 117-38. https://doi.org/10.2174/157488509788185123
  34. Shi RX, Ong CN, Shen HM (2005). Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells. Cancer Res, 65, 7815-23.
  35. Short JJ, Curiel DT (2009). Oncolytic adenoviruses targeted to cancer stem cells. Mol Cancer Ther, 8, 2096-102. https://doi.org/10.1158/1535-7163.MCT-09-0367
  36. Suliman A, Lam A, Datta R, et al (2001). Intracellular mechanisms of TRAIL: apoptosis through mitochondrialdependent and -independent pathways. Oncogene, 20, 2122-33. https://doi.org/10.1038/sj.onc.1204282
  37. Verma IM, Somia N (1997). Gene therapy-promises, problems and prospects. Nature, 389, 239-42. https://doi.org/10.1038/38410
  38. Volpers C, Kochanek S (2004). Adenoviral vectors for gene transfer and therapy. J Gene Med, 6, S164-71. https://doi.org/10.1097/00125817-200405000-00013
  39. von Haefen C, Gillissen B, Hemmati PG, et al (2004). Multidomain Bcl-2 homolog Bax but not Bak mediates synergistic induction of apoptosis by TRAIL and 5-FU through the mitochondrial apoptosis pathway. Oncogene, 23, 8320-32. https://doi.org/10.1038/sj.onc.1207971
  40. Walczak H, Krammer PH (2000). The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res, 256, 58-66. https://doi.org/10.1006/excr.2000.4840
  41. Walczak H, Miller RE, Ariail K, et al (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med, 5, 157-63. https://doi.org/10.1038/5517
  42. Wang S (2010). TRAIL: a sword for killing tumors. Curr Med Chem, 17, 3309-17. https://doi.org/10.2174/092986710793176285
  43. Wang S, El-Deiry WS (2003). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene, 22, 8628-33. https://doi.org/10.1038/sj.onc.1207232
  44. Zhang S, Shen HM and Ong CN (2005). Down-regulation of c-FLIP contributes to the sensitization effect of 3, 3'-diindolylmethane on TRAIL-induced apoptosis in cancer cells. Mol Cancer Ther, 4, 1972-81. https://doi.org/10.1158/1535-7163.MCT-05-0249
  45. Zhao L, Dong A, Gu J, et al (2006). The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther, 13, 1011-22. https://doi.org/10.1038/sj.cgt.7700969
  46. Zhu ZB, Lu B, Park M, et al (2008). Development of an optimized conditionally replicative adenoviral agent for ovarian cancer. Int J Oncol, 32, 1179-88.

Cited by

  1. Effect of Embelin on TRAIL Receptor 2 mAb-induced Apoptosis of TRAIL-resistant A549 Non-small Cell Lung Cancer Cells vol.14, pp.10, 2013, https://doi.org/10.7314/APJCP.2013.14.10.6115
  2. XIAP Associated Factor 1 (XAF1) Represses Expression of X-linked Inhibitor of Apoptosis Protein (XIAP) and Regulates Invasion, Cell Cycle, Apoptosis, and Cisplatin Sensitivity of Ovarian Carcinoma Cells vol.16, pp.6, 2015, https://doi.org/10.7314/APJCP.2015.16.6.2453