References
- T. K. Alder, and A. Albert, The Biological and Physical Properties of The Azaindoles. J. Med. Chem., 6, 480 (1963). https://doi.org/10.1021/jm00341a003
- M. Pullagurla, M. Dukat, B. L. Roth, V. Setola and R.A. Glennon, 5-Azatryptamine Analogures as H5-HT6 Serotonin Receptor Ligands. Med. Chem. Res. 14, 1 (2005). https://doi.org/10.1007/s00044-004-0121-8
- S. Lee and H.-Y. Lee, Studies of Vindoline Metabolism in Catharanthus Roseus Cell Cultures using Deuteriumlabeled Tabersonine. J. of Korean Oil Chemists' Soc., 29(1), 71 (2012).
- H.Y. Lee, N. Yerkes, and S. E. O'Connor, Aza-tryptamine Substrates in Monoterepene Indole Alkaloid Biosynthesis. Chemistry & Biology, 16, 1225 (2009). https://doi.org/10.1016/j.chembiol.2009.11.016
- C. Marminon, A. Pierre, B. Pfeiffer, V. Perez, S. Leonce, A. Joubert, C. Bailly, P. Renard, J. Hickman and M. Prudhomme, Synthesis and Antiproliferative Activities of 7-azarebeccamycin Analogues Bearing one 7-azaindole Moiety, J. Med. Chem. 46, 609 (2003). https://doi.org/10.1021/jm0210055
- R. W. Schumacher and B. S. Davidson, Didemnolines a-d, new N9-substituted Beta-carbolines from The Marine Ascidian Didemnum sp. Tetrahedron 51, 10125 (1995). https://doi.org/10.1016/0040-4020(95)00594-X
- J.J. Maresh, L. A. Giddings, A. Friedrich, E.A. Loris, S. Panjikar, B.L, Trout, J. Stockigt, B. Peters and S.E. O'Connor. Strictosidine Synthase: Mechanism of a Pictet-Spengler Catalyzing Enzyme. J. Am. Chem. Soc., 130, 710 (2008). https://doi.org/10.1021/ja077190z
- E. McCoy, M. C. Galan and S. E. O'Connor, Substrates Specificity of Strictosidine Synthase, Bioorg. Med. Chem. Lett., 16, 2475 (2006). https://doi.org/10.1016/j.bmcl.2006.01.098
- A. Klapars and S. L. Buchwald, Copper-catalyzed Halogen Exchange in Aryl Halides: An Aromatic Finkelstein Reaction. J. Am. Chem. Soc., 124, 14844 (2002) https://doi.org/10.1021/ja028865v
- J. Y. Merour, and B. Joseph, Synthesis and Reactivity of 7-azaindoles (1H-pyrrol[2,3-b]pyridine), Curr. Org. Chem. 5, 471 (2001).
- F. Ujjainwalla and D. Warner, Synthesis of 5-, 6- and 7-azaindoles Via Palladium-catalyzed Heteroannulation of Internal Alkynes. Tetrahederon Lett., 39, 5355 (1998). https://doi.org/10.1016/S0040-4039(98)01069-7
- Z. Zhang, Z. Yang, H. Wong, J. Zhu, N.A. Meanwell, J.F. Kadow, and T. Wang, An Effective Procedure for The Acylation of Azaindoles at C-3. J. Org. Chem., 67, 6226 (2002). https://doi.org/10.1021/jo020135i
- P. Bernhardt, E. McCoy and S. E. O'Connor, Rapid identification of Enzyme Variants for Reengineered Alkaloid Biosynthesis in Periwinkle, Chem. Biol., 14, 888 (2007). https://doi.org/10.1016/j.chembiol.2007.07.008
- Y. Yamazaki, A. Urano, H. Sudo, M. Kitajima, H. Takayama, M. Yamazaki, N. Aimi, K. Saito, Metabolite Profiling of Alkaloids and Strictosidine Synthase Activity in Camptothecin Producing Plants, Phytochemistry, 62, 461 (2002).
- P. Bernhardt, N. Yerkes, and S. E. O'Connor, Bypassing Stereoselectivity in The Early Steps of Alkaloid Biosynthesis, Org Biomol Chem., 7 (20), 4166 (2009). https://doi.org/10.1039/b916027m
- S. Hisiger and M. Jolicoeur, Analysis of Catharanthus Roseus Alkaloids by HPLC, Phytochem Rev., 6, 207 (2007). https://doi.org/10.1007/s11101-006-9036-y
- P. J. Facchini, Alkaloid Biosynthesis in Plants: Biochemistry, Cell Biology, Molecualr Regulation, and Metabolic Engineering Applications, Annu. Rev. Plant Physiol. Plant Mol. 52, 29 (2001). https://doi.org/10.1146/annurev.arplant.52.1.29