DOI QR코드

DOI QR Code

다차원 배낭 문제를 위한 정수계획법 기반 지역 탐색 기법

Integer Programming-based Local Search Techniques for the Multidimensional Knapsack Problem

  • 황준하 (금오공과대학교 컴퓨터공학과)
  • Hwang, Jun-Ha (Dept. of Computer Engineering, Kumoh National Institute of Technology)
  • 투고 : 2012.02.28
  • 심사 : 2012.05.21
  • 발행 : 2012.06.30

초록

정수계획법 기반 지역 탐색은 단순 언덕오르기 탐색을 기반으로 하는 지역 탐색의 일종으로서 기존의 지역 탐색과는 달리 이웃해 생성 시 정수계획법을 활용한다. 기존 연구 [1]에 의하면 정수계획법 기반 지역 탐색은 경영과학 및 인공지능 분야에서 많은 관심을 받아 온 다차원 배낭 문제를 해결하는 데 매우 효과적인 것으로 알려져 있다. 그러나 해당 연구에서는 OR-Library에 있는 다차원 배낭 문제들 중 규모가 가장 큰 문제들만을 대상으로 하여 정수계획법 기반 지역 탐색의 우수성을 검증하였다는 단점이 있다. 본 논문에서는 그 외의 문제들을 대상으로 정수계획법 기반 지역 탐색을 적용함으로써 보다 객관적으로 정수계획법 기반 지역 탐색의 우수성을 검증한다. 아울러 본 논문에서는 기존의 정수계획법 기반 지역 탐색이 단순 언덕오르기 탐색과 정수계획법을 결합한 것과는 달리 언덕오르기 탐색, 타부 탐색, 시뮬레이티드 어닐링과 같은 다른 지역 탐색 기법과 정수계획법을 결합하는 방안을 제시한다. 실험 결과, 정수계획법 기반 지역 탐색은 중소 규모의 다차원 배낭 문제들에 있어서도 기존의 가장 좋은 휴리스틱 탐색 기법에 비해 유사하거나 더 우수한 성능을 발휘함을 확인하였다.

Integer programming-based local search(IPbLS) is a kind of local search based on simple hill-climbing search and adopts integer programming for neighbor generation unlike general local search. According to an existing research [1], IPbLS is known as an effective method for the multidimensional knapsack problem(MKP) which has received wide attention in operations research and artificial intelligence area. However, the existing research has a shortcoming that it verified the superiority of IPbLS targeting only largest-scale problems among MKP test problems in the OR-Library. In this paper, I verify the superiority of IPbLS more objectively by applying it to other problems. In addition, unlike the existing IPbLS that combines simple hill-climbing search and integer programming, I propose methods combining other local search algorithms like hill-climbing search, tabu search, simulated annealing with integer programming. Through the experimental results, I confirmed that IPbLS shows comparable or better performance than the best known heuristic search also for mid or small-scale MKP test problems.

키워드

참고문헌

  1. J. Hwang, S. Park, and I. Y. Kong, "An Integer Programming-based Local Search for Large-scale Multidimensional Knapsack Problems," International Journal on Computer Science and Engineering, Vol. 3, No. 6, pp. 2257-2264, June 2011.
  2. J. Hwang, and S. Kim, "An Integer Programming-based Local Search for Large-scale Maximal Covering Problems," International Journal on Computer Science and Engineering, Vol. 3, No. 2, pp. 837-843, Feb. 2011.
  3. L. A. Wolsey, "Integer Programming," Wiley, pp. 91-111, 1998.
  4. J. E. Beasley, "A Lagrangian Heuristic for Set Covering Problems," Naval Research Logistics, Vol. 37, No. 1, pp. 151-164, Feb. 1990. https://doi.org/10.1002/1520-6750(199002)37:1<151::AID-NAV3220370110>3.0.CO;2-2
  5. N. Mladenovic, J. Brimberg, P. Hansen and J. A. Moreno Perez, "The p-median Problem: A Survey of Metaheuristic Approaches," European Journal of Operational Research, Vol. 179, No. 3, pp. 927-939, June 2007. https://doi.org/10.1016/j.ejor.2005.05.034
  6. M. Diaby, "The Traveling Salesman Problem: A Linear Programming Formulation," WSEAS Transactions on Mathematics, Vol. 6, No. 6, pp. 745-754, May 2007.
  7. J. Hwang, and K. R. Ryu, "A Hybrid of Neighborhood Search and Integer Programming for Crew Schedule Optimization," Journal of KISS : Software and Applications, Vol. 31, No. 6, pp. 829-839, June 2004.
  8. S. Hasegawa, and Y. Kosugi, "Solving Nurse Scheduling Problem by Integer-programming-based Local Search," 2006 IEEE International Conference on Systems, Man and Cybernetics, pp. 1474-1480, Oct. 2006.
  9. M. Hewitt, G. L. Nemhauser, and M. W. Savelsbergh, "Combining Exact and Heuristic Approaches for the Capacitated Fixed Charge Network Flow Problem," INFORMS Journal on Computing, Vol. 22, No. 2, pp. 314-325, Spring 2010. https://doi.org/10.1287/ijoc.1090.0348
  10. J. Hwang, and S. Kim, "Integer Programming-based Local Search Technique for Linear Constraint Satisfaction Optimization Problem," Journal of The Korea Society of Computer and Information, Vol. 15, No. 9, pp. 47-55, Sep. 2010. https://doi.org/10.9708/jksci.2010.15.9.047
  11. J. Puchinger, G. R. Raidl, and U. Pferschy, "The Multidimensional Knapsack problem: Structure and Algorithms," INFORMS Journal on Computing, Vol. 22, No. 2, pp. 250-265, Spring 2010. https://doi.org/10.1287/ijoc.1090.0344
  12. P. C. Chu, and J. E. Beasley, "A Genetic Algorithm for the Multidimensional Knapsack Problem," Journal of Heuristics, Vol. 4, No. 1, pp. 63-86, 1998. https://doi.org/10.1023/A:1009642405419
  13. J. E. Beasley, "OR-Library: Distributing Test Problems by Electronic Mail," The Journal of the Operational Research Society, Vol. 41, No. 11, pp. 1069-1072, 1990. https://doi.org/10.1057/jors.1990.166
  14. S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon, "Solving the 0-1 Multidimensional Knapsack Problem with Resolution Search," VI ALIO/EURO Workshop on Applied Combinatorial Optimization, May 2009.
  15. S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon, "A Multi-level Search Strategy for the 0-1 Multidimensional Knapsack Problem," Discrete Applied Mathematics, Vol. 158, No. 2, pp. 97-109, Jan. 2010. https://doi.org/10.1016/j.dam.2009.08.007
  16. M. Vasquez, and Y. Vimont, "Improved Results on the 0-1 Multidimensional Knapsack Problem," European Journal of Operational Research, Vol. 165, No. 1, pp. 70-81, August 2005. https://doi.org/10.1016/j.ejor.2004.01.024
  17. C. Wilbaut, and S. Hanafi, "New Convergent Heuristics for 0-1 Mixed Integer Programming," European Journal of Operational Research, Vol. 195, No. 1, pp. 62-74, May 2009. https://doi.org/10.1016/j.ejor.2008.01.044
  18. F. Della Croce, and A. Grosso, "Improved Core Problem based Heuristics for the 0/1 Multidimensional Knapsack Problem," Computers & Operations Research, Vol. 39, No. 1, pp. 27-31, Jan. 2012. https://doi.org/10.1016/j.cor.2011.03.013
  19. F. Glover, and M. Laguna, "Tabu search," Kluwer Academic Publishers, pp. 1-57, 1997.
  20. S. Russell, and P. Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall, pp. 115-116, 2005.
  21. "IBM ILOG CPLEX V12.1: User's Manual for CPLEX," International Business Machines Corporation, 2009.

피인용 문헌

  1. 집합 커버링 문제를 위한 정수계획법 기반 지역 탐색 vol.19, pp.10, 2012, https://doi.org/10.9708/jksci.2014.19.10.013
  2. 운영비용을 고려한 자전거 쉐어링의 최적 재고수준 vol.20, pp.1, 2012, https://doi.org/10.9708/jksci.2015.20.1.163