Estimating Carbon Sequestration by Planting a Leisure-Recreation Place in Gangwon Province, Korea

레저휴양공간의 수목 추가식재가 탄소흡수기능 향상에 미치는 효과

  • 홍석환 (부산대학교 조경학과) ;
  • 성찬용 (계명대학교 환경계획학과) ;
  • 유기준 (상지대학교 관광학부) ;
  • 조우 (상지대학교 관광학부)
  • Received : 2012.04.23
  • Accepted : 2012.05.23
  • Published : 2012.06.30

Abstract

This study estimated how much carbon can be sequestered if we plant trees in non-forested areas in the 36 hole Oak Valley Golf Courses in Gangwon Province, Korea. We identified plantable areas where planting trees will not affect golf game using high resolution aerial photography and ground survey and estimated the annual carbon sequestration rate of the planted trees using biomass equations. Of the golf courses, 30.3% were covered by forest. Other major land cover types include lawn, waterbody, baresoil, buildings, and roads. The plantable areas consist of $106,101m^2$ of lawn (6.0% of the study site) and $177,531m^2$ of low density forest (10.1% of the study site). We assumed to plant Mongolian oaks with 10 cm in diameter at brest height with the density of $0.3/m^2$ in the lawn and $0.2/m^2$ in the low density forest. The planting simulation shows that the total number of the newly planted trees were 67,336, and the total carbon sequestered during the subsequent year was 392.9 tC/yr, which offset 12.5% of the total carbon emitted from the golf courses. The annual carbon sequestration rate gradually increases and reaches its maximum level at 440.5 tC/yr in 15 years since the initial reforestation (14.0% of the carbon emission from the golf courses).

본 연구는 강원도에 위치한 오크밸리 관광단지 내 36홀 골프코스를 대상으로 골프장의 추가식재가 탄소흡수량을 얼마나 증가시키는지를 추정하였다. 보식 혹은 신규 식재에 의한 탄소흡수량은 현지답사와 고해상도 항공사진을 활용하여 식재가능 지역을 분석하고 적정 식재 밀도를 파악한 후 바이오매스 상대생장법을 이용하여 계산하였다. 연구대상 골프코스 중 식재지는 전체 조사대상 면적의 30.3%를 차지하고 있었으며 나머지 69.7%는 잔디 식재지, 수면, 모래땅, 기타 시설지역이었다. 잔디식재 지역 중 식재가 가능한 지역은 총 $106,101m^2$(전체면적의 6.0%)로 분석되었고 기존 수목 식재지 중 식재밀도가 현저히 낮은 지역은 $177,531m^2$(전체 면적의 10.1%)를 차지하고 있었다. 신규식재가 가능한 지역은 흉고직경 10cm의 수목을 0.3주/$m^2$의 밀도로, 추가적인 식재가 가능한 지역은 동일규격의 수목을 0.2주/$m^2$의 밀도로 식재하는 것을 가정한 결과 추가 식재 가능 수목은 총 67,336주로 나타났다. 식재수종을 신갈나무로 가정할 때 최초 식재 후 1년 간 총 탄소흡수량은 392.9tC/yr으로 예측되었다. 연간 탄소흡수량은 식재 후 15년째에 총 440.5tC/yr로 정점에 이르는 것으로 분석되었다. 이를 오크밸리 관광단지 중 연구대상지 일원의 연간 탄소배출량과 비교할 때 식재 후 1년째 탄소흡수량은 12.5%에 이르며, 신규로 식재한 수목의 탄소흡수량이 정점에 이르는 조성 후 15년이 경과한 시점에서는 연간 탄소배출량의 14.0%까지 증가하는 것으로 예측되었다.

Keywords

References

  1. Ahn, D.S. and C.H. Kim(2006) Analysis of the environmental characteristics of ponds in golf courses for ecological management. Journal of the Korean Institute of Landscape Architecture 33(6): 51-77. (in Korean with English abstract)
  2. Brown, S.(2002) Measuring carbon in forests: Current status and future challenges. Environmental Pollution 116: 363-372. https://doi.org/10.1016/S0269-7491(01)00212-3
  3. Ciborowski, P.(1989) Sources, sinks, trends, and opportunities. In: D. E. Abrahamson(ed.), The Challenge of GlobalWwarming. Washington D.C., Island Press, pp. 213-230.
  4. Garcia, M., D. Riano, E. Chuvieco and F.M. Danson(2010) Estimating biomass carbon stocks for a mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment 114: 816-830. https://doi.org/10.1016/j.rse.2009.11.021
  5. GRI(2009) Quantification of $CO_2$ uptake by urban trees and greenspace management for C sequsetration. No. 2009-09, 158pp. (in Korean with English abstract)
  6. IPCC(2003) Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. www.ipcc-ggip.iges.og.jp/lulucf/gpgluluch_unedit.html.
  7. Jensen J.R.(2005) Introductory digital image processing: A remote sensing perspective (3rd. ed.). Pearson Prentice Hall. Upper Saddle River, NJ.
  8. Jo, H.K. and E.G. McPherson(1995) Carbon storage and flux in urban residential greenspace. Journal of Environmental Management 45: 109-133. https://doi.org/10.1006/jema.1995.0062
  9. Jo, H.K., Y.H. Yun and K.E. Lee(1995) Atmospheric $CO_2$ sequestration by urban greenspace. Journal of the Korean Institute of Landscape Architecture 23(3): 80-93. (in Korean with English abstract)
  10. KFRI(2010) Greenhouse gas inventory of urban green areas - in case of the Seoul Metropolis -. Registration No. 11-1400377-000378-01. (in Korean with English abstract)
  11. Kim, K.D., K.J. Bang and H.K. Kang(2003) Environmental friendliness assessment of golf courses in the capital region of Korea. Journal of the Korean Institute of Landscape Architecture 31(5): 20-30. (in Korean with English abstract)
  12. Kim, K.H., J.Y. Shin, E.H. Koh, G.W. Koh and K.K. Lee(2009) Sea level rise around Jeju Island due to global warming and movement of groundwater/seawater interface in the eastern part of Jeju Island. J. Soil & Groundwater Env. 14(3): 68-79.
  13. Kim. C., J.Y. Jeong, R.H. Kim, Y.M. Son, K.H. Lee, J.S. Kim and I.H. Park(2011) Allometric equations and biomass expansion factors of Japanese red pine on the local level. Landscape Ecol. Eng. 7: 283-289. https://doi.org/10.1007/s11355-010-0131-2
  14. Koo, J.W., Y.W. Son, R.H. Kim and J. Kim(2005) A study on methods separating soil respiration by source. Korean Journal of Agricultural and Forest Meteorology 7(1): 28-34. (in Korean with English abstract)
  15. Kwon, Y.H. and T.H. Ro(2003) Analysis of effects on ecosystem for golf course construction. Kor. Turfgrass Sci. 17(2,3): 99-113. (in Korean with English abstract)
  16. Lee, H.J. and H.K. Kang(2004) Vegetation model for naturalness restoration as an ecological renovation in a golf course. J. of Korean Env. Res. & Reveg. Tect. 7(2): 75-86. (in Korean with English abstract)
  17. Lee, N.Y. , J.W. Koo, N. J. Noh, J. Kim and Y. Son(2010) Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in a cool-temperate forest, central Korea. J. plant res.123: 485-495. https://doi.org/10.1007/s10265-010-0316-7
  18. Lee, N.Y.(2011) Estimation of carbon storage in three cool-temperate broad-leaved deciduous forests at BukhansanNational Park, Korea. Journal of National Park Research 2(2): 53-57. (in Korean with English abstract)
  19. Lee, O.H. and K.J. Lee(2000) Optimal planting spacing on the basis of the growth condition of landscape trees. Korean Journal of Environment and Ecology 13(1): 34-48. (in Korean with English abstract)
  20. Lee, S.G.(2007) Research on golfers' awareness of development of eco-friendly golf courses and a case study of the Sun Rich Countru club. M.S. thesis, Keimyung Univ., Daegu, Korea, 77pp. (in Korean with English abstract)
  21. Lim, J.H., J.H. Shin, G.Z. Jin, J.H. Chun and J.S. Oh(2003) Forest stand structure, site characteristics and carbon budget of the Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2): 101-109. (in Korean with English abstract)
  22. Myeong, S., D.J. Nowak and M.J. Duggin(2006) A temporal analysis of urban forest carbon storage using remote sensing. Remote Sensing of Environment 101: 277-282. https://doi.org/10.1016/j.rse.2005.12.001
  23. Nowak, D.J. and E.C. Crane(2002) Carbon storage and sequestration by urban trees in the USA. Environmental Pollution 116: 381-389. https://doi.org/10.1016/S0269-7491(01)00214-7
  24. Omasa, K., G.Y. Qui, K. Watanuki, K. Yoshimi and Y. Akiyama (2003) Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees. Environmental Science and Technology 37: 1,198-1,201. https://doi.org/10.1021/es0259887
  25. Rodhe, H.(1990) A comparison of the contributions of various gases to the greenhouse effect. Science 248: 1,217-1,219. https://doi.org/10.1126/science.248.4960.1217
  26. Son, Y.M., K.H. Lee and J.K. Pyo(2011) Development of biomass allometric equations for Pinus densiflora in central region and Quercus variabilis. Journal of Agriculture & Life Science 45(4): 65-72. (in Korean with English abstract)