DOI QR코드

DOI QR Code

Estimation of Soil Moisture Content from Backscattering Coefficients Using a Radar Scatterometer

레이더 산란계 후방산란계수를 이용한 토양수분함량 추정

  • Kim, Yi-Hyun (Soil and Fertilizer Management Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Suk-Young (Soil and Fertilizer Management Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Jae-Eun (Upland Crop Research Division, National Institute of Crop Science, Rural Development Administration)
  • 김이현 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 이재은 (농촌진흥청 국립식량과학원 전작과)
  • Received : 2012.02.02
  • Accepted : 2012.03.27
  • Published : 2012.04.30

Abstract

Microwave remote sensing can help monitor the land surface water cycle, crop growth and soil moisture. A ground-based polarimetric scatterometer has an advantage for continuous crop using multi-polarization and multi-frequencies and various incident angles have been used extensively in a frequency range expanding from L-band to Ka-band. In this study, we analyzed the relationships between L-, C- and X-band signatures and soil moisture content over the whole soybean growth period. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. L-band backscattering coefficients were higher than those observed using C- or X-band over the period. Backscattering coefficients for all frequencies and polarizations increased until Day Of Year (DOY) 271 and then decreased until harvesting stage (DOY 294). Time serious of soil moisture content was not a corresponding with backscattering over the whole growth stage, although it increased relatively until early August (R2, DOY 224). We conducted the relationship between the backscattering coefficients of each band and soil moisture content. Backscattering coefficients for all frequencies were not correlated with soil moisture content when considered over the entire stage ($r{\leq}0.50$). However, we found that L-band HH polarization was correlated with soil moisture content (r=0.90) when Leaf Area Index (LAI)<2. Retrieval equations were developed for estimating soil moisture content using L-band HH polarization. Relation between L-HH and soil moisture shows exponential pattern and highly related with soil moisture content ($R^2=0.92$). Results from this study show that backscattering coefficients of radar scatterometer appear effective to estimate soil moisture content.

다편파 레이더 산란계 시스템 (L, C, X-밴드 안테나)에서 얻어진 편파별 후방산란계수와 토양수분함량과의 상관성을 분석하고 후방산란계수를 이용 토양수분함량을 추정하고자 하였다. 콩 생육시기에 따른 밴드별 후방산란계수 변화 관측 결과 L-밴드 후방산란계수가 C-, X-밴드후방산란계수보다 높게 나타났고, 모든 안테나 밴드에서 콩 생육초기에는 VV-편파가 HH, HV-편파보다 후방산란계수가 높게 나타났다. HH-편파가 VV-편파보다 후방산란계수가 높게 나타나는 시기는 밴드에 따라 차이를 보였다. L-밴드의 경우 7월 20일 (DOY 200), C, X-밴드는 7월 30일 (DOY 210)부터 HH-편파가 다른 편파들 보다 후방산란계수가 높게 나타났다. 모든 안테나 편파별 후방산란계수가 9월 29일 (DOY 271)에 최대값을 보였고, 그 이후 수확기 (DOY 294) 까지 감소하였다. L-밴드 HH-편파와 VV-편파 간의 차이는 꼬투리가 생성되는 착협기 (R3, DOY 228) 부터 다른 밴드에 비해 크게 나타났고, 반면에 C-밴드 HH-편파와 VV-편파 간의 차이는 착협성기 (R4, DOY 242) 이후 증가폭이 크게 나타났다. 후방산란계수와 토양수분함량과의 변화를 분석한 결과 생육기간동안 토양수분함량 변이가 컸고, 전체 생육기간에서는 모든 밴드별 후방산란계수와 토양수분함량 간에 상관성이 나타나지 않았다. 하지만 엽면적지수가 2 이하 (R2, DOY 224) 일 때 후방산란계수가 증가함에 따라 토양수분함량도 증가하는 경향을 보였다. 밴드별 후방산란계수와 토양수분함량과의 상관관계를 분석하였다. 전체 생육기간에서는 모든 밴드에서 두 변수간의 상관계수가 낮게 나타났다 ($r{\leq}0.50$). 반면에 엽면적지수 2 이하 일 때 모든 밴드에서 후방산란계수와 토양수분함량과의 상관계수가 전체 생육단계에서 조사한 것 보다 높게 나타났다. L-밴드 후방산란계수가 C-, X-밴드 후방산란계수 보다 토양수분함량과의 상관성이 높게 나타났고 ($r{\geq}0.84$), L-밴드 HH-편파가 상관계수가 가장 높았다 (r=0.90). X-밴드 후방산란계수는 L-, C-밴드 후방산란계수보다 상관계수가 낮게 나타났다 ($r{\leq}0.71$). 후방산란계수를 이용하여 토양수분함량 추정 모형식을 작성하였다. L-밴드 HH-편파 후방산란계수와 토양수분함량과의 관계를 비교해 본 결과 결정계수가 높게 나타났다($R^2=0.92$). 본 연구를 통해 레이더 산란계 시스템에서 얻어진 후방산란계수를 이용하여 토양수분함량을 추정할 수 있음을 확인하였다.

Keywords

References

  1. Bahari, S.A., H. Tali., T. Chuah, and H.T. Ewe. 1997. A preliminary study of phenological growth stages of wetland rice using ERS1/2 SAR data. in proc. IEEE International Geoscience Remote Sensing Symposium. pp. 1069-1071.
  2. Bartsch, A., C. Pathe, and W. Wagner. 2007. Relative soil moisture from C- and L-band SAR time series, The 1st Joint PI Symposium of ALOS Data Nodes for ALOS Science Program, Kyoto, Japan. 19-23 Nov. 2007.
  3. Bindlish, R. and A.P. Barros. 2001. Parameterization of vegetation backscatter in radar-based soil moisture estimation. Remote Sens. Environ. 76:130-137. https://doi.org/10.1016/S0034-4257(00)00200-5
  4. Bouvet, A. and T. Le Toan. 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens. Environ. 115:1090-1101. https://doi.org/10.1016/j.rse.2010.12.014
  5. Chen, C. and H. Mcnairn. 2006. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27:1367-1393. https://doi.org/10.1080/01431160500421507
  6. Dobson, M.C. and F.T. Ulaby. 1986. Active microwave soil moisture research. IEEE Trans. Geosci. Remote Sens. 24:23-36. https://doi.org/10.1109/TGRS.1986.289585
  7. Fehr, W.R. and C.E. Caviness. 1977. Stages of soybean development. Iowa Agric. Home Econ. Exp. Stn, IA, USA.
  8. Fung, A.K. 1994. Microwave scattering and emission models and their applications. Artech House Inc., Norwood, MA, USA.
  9. Hallikainen, T., F.T. Ulaby., M.C. Dobson., M.A. El-Rayes, and L. Wu. 1985. Microwave dielectric behavior of wet soil. Part-I: Empirical models and experimental observation. IEEE Trans. Geosci. Remote Sens. 23:25-34. https://doi.org/10.1109/TGRS.1985.289497
  10. Jackson, T.J., A. Chang, and T.J. Schmugge. 1981. Aircraft active microwave measurements for estimating soil moisture. Photogramm. Eng. Rem. Sens. 47:801-805.
  11. Kim, Y.H., S.Y. Hong., H.Y. Lee, and J.E. Lee. 2011. Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement. Korean J. Remote Sens. 27(2):191-201. https://doi.org/10.7780/kjrs.2011.27.2.191
  12. Kurosu, T., M. Fujita, and K. Chiba. 1995. Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans. Geosci. Remote Sens. 33(4):1092-1096. https://doi.org/10.1109/36.406698
  13. Le Toan, T., H. Laur., E. Mougin, and A. Lopes. 1989. Multi-temporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Trans. Geosci. Remote Sens. 27(6):709-718. https://doi.org/10.1109/TGRS.1989.1398243
  14. Macelloni, G., S. Paloscia., P. Pampaloni., F. Mariliani, and M. Gai. 2001. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 39:873-884. https://doi.org/10.1109/36.917914
  15. Maity, S., C. Patnaik, and S. Panigraphy. 2004. Analysis of temporal backscattering of cotton crops using a semiempirical model. IEEE Trans. Geosci. Remote Sens. 42: 577-587. https://doi.org/10.1109/TGRS.2003.821888
  16. Moran, M.S., C.D. Peters-Lidard., J.M Watts, and S. McElroy. 2004. Estimating soil moisture at the watershed scale with satellite-based. Can. J. Rem. Sens. 30:805-826. https://doi.org/10.5589/m04-043
  17. Paris, J.F. 1986. The effect of leaf size on the microwave backscattering by corn. Remote Sens. Environ. 19:81-95. https://doi.org/10.1016/0034-4257(86)90042-8
  18. Prasad, R. 2009. Retrieval of crop variables with field-based X-band microwave remote sensing of ladyfinger. Advanced in space research. 43:1356-1363. https://doi.org/10.1016/j.asr.2008.12.017
  19. Prevot, L., I. Champion, and G. Guyot. 1993. Estimation surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer. Remote Sens. Environ. 46:331-339. https://doi.org/10.1016/0034-4257(93)90053-Z
  20. Ram, V., M, Ali., M, Daily, J. Gabrynowicz, S. Narumalani, K. Nygard, W. Perrizo., S. Reichenbach., G.A. Seielstad, and W. White. 1995. Accessing Earth system science data and applications through high-bandwidth networks. IEEE Sel. Areas Commun. 13:793-805. https://doi.org/10.1109/49.391756
  21. Ribbes, F. and T. Le Toan. 1999. Rice field mapping and monitoring with RADARSAT data. Int. J. Remote Sens. 20:745-765. https://doi.org/10.1080/014311699213172
  22. Schmugge, T. 1978. Remote sensing of surface soil moisture. J. Appl. Meteorol. Clim. 17:1549-1557. https://doi.org/10.1175/1520-0450(1978)017<1549:RSOSSM>2.0.CO;2
  23. Singh, D. 2006. Scatterometer performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X-band. Int. J. Remote Sens. 27(19):4101- 4115. https://doi.org/10.1080/01431160600735988
  24. Ulaby, F.T. 1974. Radar measurement of soil moisture content. IEEE Trans. Antennas Propag. 22:257-265. https://doi.org/10.1109/TAP.1974.1140761
  25. Ulaby, F.T. M.K, Moore, and A.K. Fung. 1982, Microwave remote sensing. Active and Passive. Artech House Inc., Norwood, MA, USA.
  26. Ulaby, F.T., C.T. Allen., G. Eger, and E.T. Kanemasu. 1984. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 14:113-133. https://doi.org/10.1016/0034-4257(84)90010-5
  27. Ulaby, F.T. and C. Elachi. 1990. Radar polarimetry for geoscience applications. Artech House Inc., Norwood, MA, USA.
  28. Wagner, W., G. Lemoine., M. Borgeaud, and H. Rott. 1999. A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens. 37:938-948. https://doi.org/10.1109/36.752212
  29. Xiao, X., S. Boles., S. Frolking., C. Li., J.Y. Babu, and W. Salas. 2005. Mapping paddy rice agriculture in south and southeast asia using multi-temporal MODIS images. Remote Sens. Environ. 100:95-113.

Cited by

  1. Monitoring Wheat Growth by COSMO-SkyMed SAR Images vol.29, pp.1, 2013, https://doi.org/10.7780/kjrs.2013.29.1.4
  2. Estimation of Soil Moisture Content in Corn Field Using Microwave Scatterometer Data vol.47, pp.4, 2014, https://doi.org/10.7745/KJSSF.2014.47.4.235