DOI QR코드

DOI QR Code

Study on Cosmeceutical Activities and Anti-inflammatory Activities of Magnolia biondii Extracts

신이화(辛夷花, Magnoliae Flos)추출물의 화장품약리활성 및 항염증효과에 관한 연구

  • Kim, Young-Hun (Skin Science R&D Center, MEDIWAY Korea Co., Ltd.) ;
  • Sung, Ji-Yeon (Medicinal Nano Material Institute, Bio-FD&C Co., Ltd.) ;
  • Seo, Kyo-Seong (Small and Medium Business Administration) ;
  • Shin, Jae-Cheon (Pohang Center for Evaluation of Biomaterial) ;
  • Kim, Byung-So (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Yeum, Jeong-Hyun (Department of Bio-Fibers and Materials Science, Kyungpook National University) ;
  • Lee, Jin-Tae (Department of Cosmeceutical Science, Daegu Haany University)
  • 김영훈 ((주)메디웨이코리아 피부과학연구소) ;
  • 성지연 (BIO-FD&C 의학나노소재연구소) ;
  • 서교성 (대구경북지방중소기업청) ;
  • 신재천 (포항테크노바이오정보지원센터) ;
  • 김병소 (영남이공대학 화장품화공계열) ;
  • 염정현 (경북대학교 바이오섬유소재학과) ;
  • 이진태 (대구한의대학교 화장품약리학과)
  • Received : 2012.01.19
  • Accepted : 2012.05.30
  • Published : 2012.06.30

Abstract

Existing pharmaceutical studies show that Magnolia biondii is effective in treating rhinitis and in reducing cholesterol, given its endogenous, volatile ingredients. The study herein seeks to assess the cosmeceutical activities and anti-inflammatory activities of Magnolia biondii extracts for possible application as cosmetic ingredients. The cosmeceutical and anti-inflammatory activities were investigated using hydroxyl radical scavenging, superoxide dismutase (SOD)-like activity, xanthine oxidase (XO) inhibition, cell viability, nitric oxide (NO) inhibition, and inducible nitric oxide synthase (iNOS) expression by Western blotting. Magnolia biondii extracts were identified to have antioxidant activities in hydroxyl free radical scavenging, SOD-like activity, and XO inhibition. In testing the anti-inflammatory activities of the extracts, NO production was inhibited in a dose-dependent manner. Additionally, in a dose-dependent manner, the Magnolia biondii extracts were able to suppress iNOS expression in LPS-stimulated RAW 264.7 macrophage cells. From these results, Magnolia biondii showed adequate potential for application in cosmetic production and related industries as well as a functional material.

본 연구에서는 신이화에 함유된 물질을 열수와 에탄올을 이용하여 추출한 후 화장품약리활성 및 항염증효과를 확인하고, 화장품 및 바이오산업에 적용하기 위한 천연소재로써의 이용 가능성을 살펴보았다. DPPH 라디칼 소거능 실험결과 농도의존적으로 소거능 효과를 보이며, 열수추출물의 경우 5,000 ug/ml 농도에서 대조군인 BHA보다 우수한 효능을 보였다. SOD 유사활성에서는 농도가 증가할수록 유사활성이 증가하는 것을 확인할 수 있었고, 5,000 ug/ml에서 열수추출물의 경우 85% 유사활성을 나타내었고, 에탄올 추출물의 경우 43%의 유사활성을 나타내었다. Xanthine oxidase 저해능 실험에서도 5,000 ug/ml 농도에서 대조군 BHA 보다 높은 저해능을 효여 우수한 항산화효과를 보였으며, 합성항산화제를 대체할 수 있는 천연항산화제로 사용이 가능할 것으로 사료된다. 항염증효과를 확인하기 위하여 NO 저해 활성 및 iNOS 발현량을 측정하였는데, 열수와 에탄올 추출물 모두 농도가 증가할 수로 NO 저해활성과 iNOS 발현량이 감소하여 우수한 항염증효과를 보였다. 이상의 결과에서 신이화 열수추출물과 에탄올추출물은 우수한 화장품약리활성 및 항염증효과가 있음을 확인할 수 있었고, 안티에이징 및 트러블 피부 개선 화장품 소재로서의 가능성을 확인할 수 있었다.

Keywords

References

  1. Ahn, E. K., Jeon, H. J., Lim, E. J., Jung, H. J. and Park, E. H. 2007. Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J. Ethnopharmacol. 110, 476-482. https://doi.org/10.1016/j.jep.2006.10.006
  2. Ames, B. N. 1989. Endogenous oxidative DNA damage, aging and cancer. Free Radic. Res. Commu. 7, 121-128. https://doi.org/10.3109/10715768909087933
  3. Aust, S. D., Chignell, C. F., Bray, T. M., Kalyanaraman, B. and Mason, R. P. 1993. Free radicals in toxicology. Toxicol. Appl. Pharm. 120, 168-178. https://doi.org/10.1006/taap.1993.1100
  4. Blois, M. S. 1958. Antioxidant determination with the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  5. Bryan, D. M., Murnahan, M. J., Jones, K. S. and Bowley, S. R. 2000. Iron-superoxide dismutase expression in transgenic alfalfa increase winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol. 122, 1427-1438. https://doi.org/10.1104/pp.122.4.1427
  6. Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxyl anisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52, 59-63. https://doi.org/10.1007/BF02901825
  7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  8. Carmichael, J., Degraff, W. G., Gazdar, A. F., Minnaand, J. D. and Mitchell, J. B. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
  9. Cha, B. C. and Lee, E. H. 2004. Antioxidant and anti-inflammation activities of Prunus persica tree extracts. Korean J. Medicinal Crop. Sci. 12, 289-294.
  10. Chiang, H. C., Lo, Y. J. and Lu, F. J. 1994. Xanthine oxidase inhibitors from the leaves of Alsophila Spinulosa (Hook) Tryon. J. Enzym Inhib. 8, 61-71. https://doi.org/10.3109/14756369409040777
  11. Choi, S. Y., Chung, M. J. and Sung, N. J. 2008. Studies on the antioxidative ability of methanol and extracts from Orostachys japonicas A. Berger according to harvest time. Korea J. Food Nutr. 21, 157-164.
  12. Funk, C. D., Funk, L. B., Kennedy, M. E., Pong, A. S. and Fitzgerald, G. A. 1991. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression and gene chromosomal assignment. FASEB. J 5, 2304-2312.
  13. Grasbon, T., Grasbon-Frodl, E. M., Juliusson, B., Epstein, C., Brundin, P., Kampik, A. and Ehinger, B. 1999. CuZn superoxide dismutase transgenic retinal transplans. Graefes. Arch. Clin. Exp. Ophthalmol. 237, 336-341. https://doi.org/10.1007/s004170050241
  14. Greenstock, C. L. 1993. Radiation and aging: free radical damage, biological response and possible antioxidant intervention. Med. Hypotheses 41, 473-482. https://doi.org/10.1016/0306-9877(93)90131-9
  15. Hatano, T., Yasuhara, T., Fukuda, T., Noro, T. and Okuda, T. 1989. Phenolic constituents of licorce. II. Structures of licopyranocoumarin, licoaryl-coumarin and glisoflavone, and inhibitory effects of licorice phenolics on xanthine oxidase. Chem. Pharm. Bull. 37, 3005-3009. https://doi.org/10.1248/cpb.37.3005
  16. Jung, S. J., Lee, J. H., Song, H. N., Seong, N. S., Lee, S. E. and Baek, N. I. 2004. Screening for antioxidant activity of plant medicinal extracts. J. Korean Soc. Appl. Biol. Chem. 47, 135-140.
  17. Kim, B. J., Kim, J. H., Kim, H. P. and Heo, M. Y. 1997. Biological screening of 100 plant for cosmetic use (II): Anti-oxidative activity and free radical scavenging activity. Int. J. Cosm. Sci. 19, 299-307. https://doi.org/10.1111/j.1467-2494.1997.tb00194.x
  18. Kim, H. J., Park, T. S., Jung, M. S. and Son, J. H. 2011. Study on the anti-oxidant and anti-inflammatory activities of Sarcocarp and Calyx of Persimon (Cheongdo Bansi). J. Appl. Biol. Chem. 54, 71-78. https://doi.org/10.3839/jabc.2011.013
  19. Lee, H. J., Hyun, E. A., Yoon, W. J., Kim, B. H., Rhee, M. H., Kang, H. K., Cho, J. Y. and Yoo, E. S. 2006. In vitro anti- inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol. 103, 208-216. https://doi.org/10.1016/j.jep.2005.08.009
  20. Lim, S. S., Shin, K. H., Bang, H. S., Kim, Y. P., Jung, S. H., Kim, Y. J. and Ohuchi, K. 2002. Effect of the essential oil from the flowers of Magnolia sieboldii on the lipopolysaccharide- induced production of nitric oxide and prostaglandin E2 by rat peritoneal macrophages. Planta. Med. 68, 459-462. https://doi.org/10.1055/s-2002-32085
  21. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  22. Moncada, S., Palmer, R. M. and Higgs, E. A. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
  23. Pan, Y. M., Liang, Y., Wang, H. S. and Liang, M. 2004. Antioxidant activities of several Chinese medicinal herbs. Food Chemistry 88, 347-350. https://doi.org/10.1016/j.foodchem.2004.02.002
  24. Pryor, W. A. 1986. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol. 48, 657-667. https://doi.org/10.1146/annurev.ph.48.030186.003301
  25. Pyo, M. K., Lee, Y. and Choi, H. S. 2002. Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch. Pharm. Res. 25, 325-328. https://doi.org/10.1007/BF02976634
  26. Rice-Evans, C. A., Miller, N. J. and Paganga, G. 1996. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 0, 933-956.
  27. Shen, Y., E. Pang, C. K., Xue, C. C. L., Zhao, Z. Z., Lin, J. G. and Li. C. G. 2008. Inhibitions of mast cell-derived histamine release by different Flos Magnoliae species in rat peritoneal mast cells. Phytomedicine 15, 808-814. https://doi.org/10.1016/j.phymed.2008.04.012
  28. Stirpe, F. and Corte, E. D. 1969. The regulation of rat liver xanthine oxidase. J. Biol. Chem. 244, 3855-3863.
  29. Stohs, S. J. 1995. The role of free radicals in toxicity and disease. J. Basic Clin. Physiol. Pharmacol. 6, 205-228.
  30. Towbin, J., Staehlin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA 76, 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  31. Yang, S. E., Hsieh, M. T. and Hsu, S. L. 2003. Effectors mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. Brit. J. Pharmacol. 138, 193-201. https://doi.org/10.1038/sj.bjp.0705024

Cited by

  1. Antioxidant and anti-inflammatory activities of Opuntia ficus-indica and Opuntia humifusa fruits ethanol extracts vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.586