Effects of Hwanggeum-tang Water Extract on the Expression of Pro-inflammatory Responses Elicited by Advanced Glycation End Products in THP-1 Cells

황금탕(黃芩湯) 추출물이 THP-1 세포에서 당화종말산물에 의한 염증반응에 미치는 효과

  • Jeong, Sang-Hun (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Lee, Kwang-Gyu (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Lee, Chang-Hyun (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Lee, Sang-Ryong (Department of Meridian & Acupoint, College of Oriental Medicine, Woosuk University) ;
  • Kim, Jae-Eun (Department of Pathology, College of Oriental Medicine, Dongguk University) ;
  • Ha, Ki-Tae (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Shin, Sang-Woo (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Jeong, Han-Sol (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
  • 정상훈 (우석대학교 한의과대학 병리학교실) ;
  • 이광규 (우석대학교 한의과대학 병리학교실) ;
  • 이창현 (우석대학교 한의과대학 해부학교실) ;
  • 이상룡 (우석대학교 한의과대학 경혈학교실) ;
  • 김재은 (동국대학교 한의과대학 병리학교실) ;
  • 하기태 (부산대학교 한의학전문대학원 응용의학부) ;
  • 신상우 (부산대학교 한의학전문대학원 응용의학부) ;
  • 정한솔 (부산대학교 한의학전문대학원 응용의학부)
  • Received : 2012.03.07
  • Accepted : 2012.04.12
  • Published : 2012.04.25

Abstract

Hwanggeum-tang (HGT) was recorded in Dongeuibogam as being able to treat Sogal whose concept had been applied to Diabetes Mellitus (DM). Advanced glycation end products (AGEs) play important roles in the development of diabetic complications such as atherosclerosis by eliciting inflammatory responses. In this study, we examined the suppressive effects of HGT against inflammation elicited by AGEs. AGEs treatment increased the expression of pro-inflammatory cytokine gene TNF-${\alpha}$; chemokines MCP-1, IP-10; pro-inflammatory cyclooxygenase COX-2 on the THP-1 cells. HGT had suppressed the expression of pro-inflammatory genes and protein levels in AGE-treated THP-1 cells. HGT had also decreased intracellular ROS production stimulated by AGEs. These results suggest that HGT has beneficial effects for the improvement diabetic vascular complication through suppressing inflammatory responses elicited by AGEs.

Keywords

References

  1. VINAY KUMAR, ABUL K., ABBAS, NELSON FAUSTO. The endocrine pancreas. In: Pathologic basis of disease. 7th ed. Elsevier saunders; pp 1189-1200, 2005.
  2. Sheetz, M.J., King, G.L. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA. 288: 2579-2588, 2002. https://doi.org/10.1001/jama.288.20.2579
  3. Ahemed, N., Thornalley, P.J. Advanced glycation endproduct: what is their relevance to diabetic complications?. Diabetes, Obesity and Metabolism. 9: 233-245, 2007. https://doi.org/10.1111/j.1463-1326.2006.00595.x
  4. 楊思樹, 張樹生, 傳景華 主編, 안세영 역. 동의임상내과학, 서울 법인문화사; pp 396-413, 1999.
  5. 巢元方. 巢氏諸病源候論, 卷五, 消渴病諸候消渴候, 臺中, 昭人出版社, p 161.
  6. 龔廷賢. 萬病回春五券서울, 법인문화사, p 747, 2007.
  7. 許浚, 東醫寶鑑, 卷六, 雜病篇, 消渴, 서울, 법인문화사, p 1401, 2007.
  8. Mosmann, T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxic assays. J Immunol Methods. 65: 55-63, 1983. https://doi.org/10.1016/0022-1759(83)90303-4
  9. Blois, M.S. Antioxidant determination by the use a stable free radicals. Nature. 26: 1191-1204, 1958.
  10. Bucala, R., Cerami, A., Vlassara, H. Advanced glycosylation end products in diabetic complications. Diabetes Rev. 3: 258-268, 1995.
  11. Kumar et al. Robbins Basic Pathology 8ed, SAUNDERS ELSEVIER: p 780, 2007.
  12. 김응진 외. 당뇨병학, 서울, 고려의학, pp 391-468, 1992.
  13. 서울대학교 의과대학 내과학교실: 내과학, 서울, 군자출판사, pp 806-813, 1996.
  14. Ruderman, N., Williamson, J.R., Brownlee, M. Glucose and diabetic vascular disease. FASEB J. 6: 2905-2914, 1992.
  15. Pugliese, G., Tilton, R.G., Williamson, J.R. Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease. Diabete Metab Rev. 7: 35-59, 1991. https://doi.org/10.1002/dmr.5610070106
  16. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature. 414: 813-820, 2001. https://doi.org/10.1038/414813a
  17. Brownlee, M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 318: 1315-1321, 1988. https://doi.org/10.1056/NEJM198805193182007
  18. Schmidt A., Hori O., Brett J., Yan S.D., Wautier J.L., Stern D. Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb. 14: 1521-1528, 1994. https://doi.org/10.1161/01.ATV.14.10.1521
  19. Vlassara, H. Recent progress in advanced Nglycation end products and diagetic complications. Diabetes. 46(2):S19-S25, 1997.
  20. Bierhaus, A., Hofmann, M.A., Ziegler, R., Nawroth, P. AGEs and their interation with AGE-receptors in vascular disease and diabetes mellitus I. The AGE concept. Cardiovasc Res. 37: 586-600, 1998. https://doi.org/10.1016/S0008-6363(97)00233-2
  21. Brownlee, M. Advanced glycation end products in diabetic complications. Curr Opinion Endocrinol Diabetes. 3: 291-297, 1996. https://doi.org/10.1097/00060793-199608000-00003
  22. Chappy, O., Dosquet, C., Wautier, M.P., Wautier, J.L. Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest. 27: 97-108, 1997.
  23. 조선영, 유원준, 안상우, 김남일. 한국 한의학에서 소갈 분류 의 형성과정, 한국한의학연구원논문집, 13(2):1-13, 2007.
  24. 殷百萬, 消渴病機說, 陜西中醫23(6):527-529, 2002.
  25. 李杲. 東垣十種醫書, 서울, 대성문화사, pp 164-167, 1983.
  26. 李梴. 醫學入門, 北京, 中國中醫藥出版社, pp 378-379, 1995.
  27. 강석봉. 소갈의 전병증과 당뇨병의 만성합병증에 대한 비교 고찰, 대한한의학회지 36: 137-152, 1998.
  28. 黃瑛, 淺儀 <<外科正宗>>對消渴脫疽的論治, New Journal of Traditional Chinese Medicine. 37(12):77-78, 2005.
  29. Gu, L., Tseng, S.C., Rollins, B.J. Monocyte chemoattractant protein-1. Chem Immunol. 72: 7-29, 1999.
  30. Shanmugam, N., Reddy, M.A., Guha, M., Natarajan, R. High glucose-induced expressioin of proinflammatory cytokine and chemokine gene in monycytic cells. Diabetes. 52: 1256-1264, 2003. https://doi.org/10.2337/diabetes.52.5.1256
  31. Shimada, A., Morimoto, S.A., Kodama, K., Suzuki, R., Oikawa, Y., Saruta, T., et al. Elevated serum IP-10 levels observed in type 1 diabetes. Diabetes Care. 24: 510-515, 2001. https://doi.org/10.2337/diacare.24.3.510
  32. Inoue, H., Umesono, K., Nishimori, T., Hirata, T., Tanabe, T. Glucocorticoid-mediated suppression of the promotor activity of the cyclooxygenase-2 gene is modulated by expression of its receptor in vascular endothelial cells. Biochem Bioph Res Commun. 254: 292-298, 1999. https://doi.org/10.1006/bbrc.1998.9939
  33. Tabatabaie, T., Vasquez-Weldon, A., Moore, D.R., Kotake, Y. Free Radicals and the Pathogenesis of Type 1 Diabetes:beta-Cell Cytokine-Mediated Free Radical Generation Via Cyclooxygenase-2. Diabetes. 52: 1994-1999, 2003. https://doi.org/10.2337/diabetes.52.8.1994
  34. Miquel, J., Quintanilha, A.T., Weber, H. Handbook of free radicals and antioxidants in biomedicine. CRC Press, vol Ip 223, 1989.
  35. Xie, Q.W., Kashiwabara, Y., Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 269: 4705-4708, 1994.
  36. Fujimoto, M., Shimizu, N., Kunii, K., Jeevendra, Martyn, J.A., Ueki, K., Kaneki, M. A Role for iNOS in Fasting Hyperglycemia and Impaired Insulin Signaling in the Liver of Obese Diabetic Mice. Diabetes. 54: 1340-1348, 2005. https://doi.org/10.2337/diabetes.54.5.1340
  37. Hiroki, S., Masao, K., Eriko, T., Michiko, S., Chieko, K., Shingo, Y. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 282: 386-394, 2002.