References
- Krcmery, V., Barmes, A.J. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 50: 243-260, 2002. https://doi.org/10.1053/jhin.2001.1151
- Haynes, K. Virulence in Candida species. Trends Microbiol 9: 591-596, 2001. https://doi.org/10.1016/S0966-842X(01)02237-5
- Ramage, G., Martinez, J.P., Lopez-Ribot, J.L. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6: 979-986, 2006. https://doi.org/10.1111/j.1567-1364.2006.00117.x
- Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T., Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183: 5385-5394, 2001. https://doi.org/10.1128/JB.183.18.5385-5394.2001
- Thein, Z.M., Samaranayake, Y.H., Samaranayake, L.P. In vitro biofilm formation of Candida albicans and non-albicans Candida species under dynamic and anaerobic conditions. Arch Oral Biol 52: 761-767, 2007. https://doi.org/10.1016/j.archoralbio.2007.01.009
- Oliver, B.G., Silver, P.M., Marie, C., Hoot, S.J., Leyde, S.E., White, T.C. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiol 154: 960-970, 2008. https://doi.org/10.1099/mic.0.2007/013805-0
- Mahmoud, A.G., Louis, B.R. Antifungal agents: mode of action, mechanism of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12: 501-517, 1999.
- Guarrera, P.M. Traditional phytotherapy in central Italy. Fitotherapia 76: 1-25, 2005. https://doi.org/10.1016/j.fitote.2004.09.006
- Park, C.S., Lee, Y.C., Kim, J.D., Kim, H.M., Kim, C.H. Inhibitory effects of Polygonum cuspidatum water extract (PCWE) and its component resveratrol on acyl-coenzyme A-cholesterol acyltransferase activity for cholesteryl ester synthesis in HepG2 cells. Vascul Pharmacol 40: 279-284, 2004. https://doi.org/10.1016/j.vph.2004.01.003
- Bralley, E.E., Greenspan, P., Hargrove, J.L., Wicker, L., Hartle, D.K. Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation. J Inflamm 5: 1-7, 2008. https://doi.org/10.1186/1476-9255-5-1
- Xiao, K., Xuan, L., Xu, Y., Bai, D., Zhong, D. Constituents from Polygonum cuspidatum. Chem Pharm Bull 50: 605-608, 2002. https://doi.org/10.1248/cpb.50.605
- Park, S.J., Choi, S.J., Shin, W.S., Lee, H.M., Lee, K.S., Lee, K.H. Relationship between biofilm formation ability and virulence of Candida albicans. J Bacteriol Virol 39: 119-124, 2009. https://doi.org/10.4167/jbv.2009.39.2.119
- Clinical Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard, 3rd edn. M27-A3. CLSI, Wayne, PA. 2008.
- Liu, M., Seidel, V., Katerere, D.R., Gray, A.I. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeast. Methods 42: 325-329, 2007. https://doi.org/10.1016/j.ymeth.2007.02.013
- Ramage, G., Vande-Walle, K., Wickes, B.L., Lopez-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45: 2475-2479, 2001. https://doi.org/10.1128/AAC.45.9.2475-2479.2001
- Roling, E.E., Klepser, M.E., Wasson, A., Lewes, R.E., Ernst, E.J., Pfaller, M.A. Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagn Microbial Infec Dis 43: 13-17, 2002. https://doi.org/10.1016/S0732-8893(02)00361-9
- Sharma, P., Sharma, J.D. In vitro hemolysis of human erythrocytes - by plant extracts with antiplasmodial activity. 74: 3239-3243, 2001.
- Pina-Vaz, C., Sansonetty, F., Rodrigues, A.G., Costa-Oliveira, S., Tavares, C., Martinez-de-Oliveira, J. Cytometric approach for a rapid evaluation of susceptibility of Candida strains to antifungals. Clin Microbiol Infect 7: 609-618, 2001. https://doi.org/10.1046/j.1198-743x.2001.00307.x
- Newman, D.J., Cragg, G.M., Snader, K.M. Natural products as sources of new drugs over the period. J Nat Prod 66: 1022-1037, 2003. https://doi.org/10.1021/np030096l
- Calderone, R.A., Fonzi, W.A. Virulence factors of Candida albicans. Trends Microbiol 9: 327-335, 2001. https://doi.org/10.1016/S0966-842X(01)02094-7
- Martin, S.W., Douglas, L.M., Konopka, J.B. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores care distinct from budding and hyphal growth. Eukaryotic cell 4: 1191-1202, 2005. https://doi.org/10.1128/EC.4.7.1191-1202.2005
- Kumamoto, C.A. Candida biofilms. Curr Opin Microbiol 5: 608-611, 2002. https://doi.org/10.1016/S1369-5274(02)00371-5
- Hoyer, L.L. The ALS gene family of Candida albicans. Trends Microbiol 9: 176-180, 2001. https://doi.org/10.1016/S0966-842X(01)01984-9
- Karkowsk-Kuleta, J., Rapala-Kozik, M., Kozik, A. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 56: 211-224, 2009.
- Ruiz-Herrera, J., Elorza, M.V., Valentin, E., Sentandreu, R. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6: 14-29, 2006. https://doi.org/10.1111/j.1567-1364.2005.00017.x