Investigation of ${\alpha}$-Glucosidase Inhibitory Activity of Ethanolic Extracts from 19 Species of Marine Macroalgae in Korea

  • Jeong, So-Young (Department of Marine Life Science, Chosun University) ;
  • Qian, Zhong-Ji (Department of Marine Life Science, and Marine Life Research and Education Center, Chosun University) ;
  • Jin, Yeong-Jun (Bio-Convergence Center, JeJu Technopark) ;
  • Kim, Gi-Ok (Bio-Convergence Center, JeJu Technopark) ;
  • Yun, Pil-Yong (Medicinal Crop Seed Supply Center, Jeollanamdo Development Institute for Traditional Korean Medicine) ;
  • Cho, Tae-Oh (Department of Marine Life Science, Chosun University)
  • Received : 2012.05.25
  • Accepted : 2012.06.08
  • Published : 2012.06.30

Abstract

In the present work, we have collected 19 species of macroalgae (9 Phaeophta and 10 Rhodophyta) f rom all around of Korea: Dictyopteris divaricata, D. prolifera, Myelophycus cavus, Papenfussiella kuromo, Petalonia zosterifolia, Petrospongium rugosum, Rugulopteryx okamurae, Sargassum fulvellum, S. muticum, Callophyllis japonica, Gloiopeltis tenax, Gracilaria longissima, Gracilaria vermiculophylla, Grateloupia asiatica, Grateloupia lanceolata, Grateloupia sparsa, Grateloupia turuturu, Grateloupia sp, and Polyopes affinis. The macroalgal species were extracted by 70% ethanol (EtOH) for 24 h and evaluated its inhibitory effects on ${\alpha}$-glucosidase. Among ethanol extracts, Myelophycus cavus showed the most effectively inhibitory activity ($IC_{50}$, 2.17 ${\mu}g/ml$) against ${\alpha}$-glucosidase, followed by Sargassum fulvellum (<$IC_{50}$, 8.13 ${\mu}g/ml$), Dictyopteris prolifera ($IC_{50}$, 16.66 ${\mu}g/ml$), Rugulopteryx okamurae ($IC_{50}$, 50.63 ${\mu}g/ml$), and Petrospongium rugosum ($IC_{50}$, 101.62 ${\mu}g/ml$). Furthermore, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay showed no cytotoxicity on mouse pre-adipocytes cell line (3T3-L1). These results suggest that some edible macroalgae merit further evaluation for clinical usefulness as anti-diabetic functional foods.

Keywords

References

  1. Bertozzi, C.R. and Kiessling, L.L., Chemical glycobiology. Science, 291, 2357-2364 (2001). https://doi.org/10.1126/science.1059820
  2. Casirola, D.M. and Ferraris, R.P., Alpha-glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism, 55, 832-841 (2006). https://doi.org/10.1016/j.metabol.2006.02.011
  3. Cho, T.O., Cho, G.Y., Yoon, H.S., Boo, S.M., and Lee, W.J., New records of Myelophycus cavus (Scytosiphonaceae, Phaeophceae) in Korea and the taxonomic position of the genus on the basis of a plastid DNA phylogeny. Nova Hedwigia, 76, 381-397 (2003). https://doi.org/10.1127/0029-5035/2003/0076-0381
  4. Charpentier, G., Oral combination therapy for type 2 diabetes. Diabetes Metabolism Research & Reviews, 18, 70-76 (2002). https://doi.org/10.1002/dmrr.278
  5. Frandsen, T.P. and Svensson, B., Plant ${\alpha}$-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Molecular Biology, 37, 1-13 (1998). https://doi.org/10.1023/A:1005925819741
  6. Gomes, A., Fernandes, E., Garcia, M.B.Q., Silva, A.M.S., Pinto, D.C.G.A., Santos, C.M.M., Cavaleiro, J.A.S., and Lima, J.L.F.C., Cyclic voltammetric analysis of 2-styrylchromones: Relationship with the antioxidant activity. Bioorganic & Medicinal Chemistry, 16, 7939-7943 (2008). https://doi.org/10.1016/j.bmc.2008.07.072
  7. Halliwell, B. and Gutteridge, J.M.C., Antioxidant defenses, Free Radicals in Biology and Medicine, 3rd ed., (p 105-159). Oxford: Oxford Science Publications (1999).
  8. Hansen, M.B., Nielsen, S.E., and Berg, K., Reexamination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203-210 (1989). https://doi.org/10.1016/0022-1759(89)90397-9
  9. Heo, S.J., Kim, J.P., Jung, W.K., Lee, N.H., Kang, H.S., Jun, E.M., Park, S.H., Kang, S.M., Lee, Y.J., Park, P.J., and Jeon, Y.J., Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated from a brown alga, Ishige okamurae. Journal of Microbiology & Biotechnology, 18, 676-681 (2008).
  10. Heo, S.J., Hwang, J.Y., Choi, J.I., Han, J.S., Kim, H.J., and Jeon, Y.J., Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent ${\alpha}$-glucosidase and a-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. European Journal of Pharmacology, 615, 252-256 (2009). https://doi.org/10.1016/j.ejphar.2009.05.017
  11. Kim, K.Y., Nam, K.A., Kurihara, H., and Kim, S.M., Potent ${\alpha}$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 69, 2829-2825 (2008).
  12. Kotake-Nara, E., Asai, A., and Nagao, A., Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Letters, 220, 75-84 (2005). https://doi.org/10.1016/j.canlet.2004.07.048
  13. Lee, D.S. and Lee, S.H., Genistein, a soy isoflavone, is a potent alpha-glucosidase inhibitor. FEBS Letters, 501(1), 84-86 (2001). https://doi.org/10.1016/S0014-5793(01)02631-X
  14. Lee, Y.P. and Kang, S.Y., A catalogue of the seaweeds in Korea (p 477). Jeju: Jeju National University Press (2001).
  15. Liu, Y., Ma, L., Chen, W.H., Wang, B., and Xu, Z.L., Synthesis of xanthone derivatives with extended p-systems as ${\alpha}$-glucosidase inhibitors: Insight into the probable binding mode. Bioorganic & Medicinal Chemistry, 15, 2810-2814 (2007). https://doi.org/10.1016/j.bmc.2007.02.030
  16. Markad, S.D., Karanjule, N.S., Sharma, T., Sabharwal, S.G., and Khavale, D.D., Synthesis and evaluation of glycosidase inhibitory activity of N-butyl 1-deoxy-D-gluco-homonojirimycin and N-butyl 1-deoxy-L-ido-homonojirimycin. Bioorganic & Medicinal Chemistry, 14, 5535-5539 (2006). https://doi.org/10.1016/j.bmc.2006.04.027
  17. Mayer, A.M.S. and Hamann, M.T., Marine pharmacology in 2001-2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, anti-tuberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comparative Biochemistry & Physiology, 140, 265-286 (2005).
  18. Porto, C.D., Decorti, D., and Kikic, I., Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chemistry, 112, 1072-1078 (2009). https://doi.org/10.1016/j.foodchem.2008.07.015
  19. Ryu, B.M., Qian, Z.J., Kim, M.M., Nam, K.W., and Kim, S.K., Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiation Physics & Chemistry, 78, 98-105 (2009). https://doi.org/10.1016/j.radphyschem.2008.09.001
  20. Scheen, A.J., Is there a role for alpha-glucosidase inhibitors in the prevention of type 2 diabetes mellitus. Drugs, 63, 933-951 (2003). https://doi.org/10.2165/00003495-200363100-00002
  21. Van de Laar, F.A., Lucassen, P.L., Akkermans, R.P., Van de Lisdonk, E.H., Rutten, G.E., and Van Weel, C., Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, CD003639 (2005).