Lignan Derivatives from Fraxinus rhynchophylla and Inhibitory Activity on Pancreatic Lipase

  • Received : 2012.05.02
  • Accepted : 2012.05.22
  • Published : 2012.06.30

Abstract

Pancreatic lipase digests dietary fats by hydrolysis, which is a key enzyme for lipid absorption. Therefore, reduction of fat absorption by the inhibition of pancreatic lipase is suggested to be a therapeutic strategy for obesity. We previously reported coumarins and secoiridoids of Fraxinus rhynchophylla as inhibitory constituents on adipocyte differentiation. Further investigation on F. rhynchophylla led to the isolation of lignan derivatives such as lignans (1 - 10), sesquilignans (11 - 14) and coumarinolignans (15 - 17). Among them, coumarinolignans and sesquilignans were first reported from Fraxinus species. Among the constituents isolated, sesquilignans showed the significant inhibition on pancreatic lipase, whereas lignans and coumarinolignans exerted weak effects.

Keywords

References

  1. Achenbach, H., Waibel, R., and Addae-Mensah I., Lignans and other constituents from Carissa edulis.Phytochemistry 22, 749-753 (1983). https://doi.org/10.1016/S0031-9422(00)86976-9
  2. Bae, K.H., The Medicinal Plants of Korea, Kyo-Hak Publishing Co., Seoul, Korea, 400 (1999).
  3. Ballinger, A. and Peikin, S.R., Orlistat: its current status as an anti-obesity drug. Eur. J. Pharmacol. 440, 109-117 (2002). https://doi.org/10.1016/S0014-2999(02)01422-X
  4. Birari, R.B. and Bhutani, K.K., Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov.Today 12, 879-889 (2007). https://doi.org/10.1016/j.drudis.2007.07.024
  5. Brug, J. and Crawford, D., The obesity pandemic. Is it bad or worse? Eur. J. Public Health 19, 570-571 (2009).
  6. Choi, K.M., Shin, E., Liu, Q., Yoo, H.S., Kim, Y.C., Sung, S.H., Hwang, B.Y., Lee, and M.K., Hydroxyframoside B, a secoiridoid from Fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3-L1 cells. Planta Med. 77, 1020-1023 (2011). https://doi.org/10.1055/s-0030-1270712
  7. Hill, J.O., Hauptman, J., Anderson, J.W., Fujioka, K., O'Neil, P.M., Smith, D.K., Zavoral, J.H., Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting: a 1-y study. Am. J.Clin.Nutr. 69, 1108-1116 (1999). https://doi.org/10.1093/ajcn/69.6.1108
  8. Kim, N.Y., Pae, H.O., Ko, Y.S., Yoo, J.C., Choi, B.M., Jun, C.D., Chung, H.T., Inagaki, M., Kiguchi, R., and Kim, Y.C., In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla. Planta Med. 65, 656-658 (1999). https://doi.org/10.1055/s-2006-960840
  9. Kopelman, P.G., Obesity as a medical problem. Nature 404, 635-643 (2000). https://doi.org/10.1038/35007508
  10. Lee, E.M., Lee, S.S., Chung, B.Y., Cho, J.Y., Lee, I.C., Ahn, S.R., Jang, S.J., and Kim, T.H., Pancreatic lipase inhibition by C-glycosidic flavones isolated from Erecmochloaophiuroides. Molecules 15, 8251-8259 (2010). https://doi.org/10.3390/molecules15118251
  11. Li, Y.C. and Kuo, Y.H., Four new compounds, ficusal, ficusesquilignan A, B, and ficusolidediacetate from the heartwood of Fucus microcarpa. Chem. Pharm. Bull. 48, 1862-1865 (2000). https://doi.org/10.1248/cpb.48.1862
  12. Li, F., Li, W., Fu, H., Zhang, Q., and Koike, K., Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus. Chem. Pharm. Bull. 55, 1087-1089 (2007). https://doi.org/10.1248/cpb.55.1087
  13. Morikawa, T., Tao, J., Ueda, K., Matsuda, H., and Yoshikawa, M., Structure of new aromatic constituents and inhibitors of degranulation in RBL-3H3 cells from a Japanese folk medicine, the stem bark of Acer nikoense. Chem. Pharm. Bull. 51, 62-67 (1993).
  14. Nakai, N., Fukui, Y., Asami, S., Toyoda-Ono, Y., Iwashita, T., Shibata, H., Mitsunaga, T., Hashimoto, F., and Kiso, Y., Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J.Agric. Food Chem. 53, 4593-4598 (2005). https://doi.org/10.1021/jf047814+
  15. Ouyang, M.A., Wein, Y.S., Zhang, Z.K., and Kuo, Y.H., Inhibitory activity against tobacco mosaic virus (TMV) replication of pinoresinol and syringaresino llignans and their glycosides from the root of Rhus javanica var. roxburghiana. J. Agric. Food Chem. 55, 6460-6465 (2007). https://doi.org/10.1021/jf0709808
  16. Ranjan, R. and Sahai, M., Coumarinolignans from the seeds of Annonasquamosa Linn. E-J.Chem. 6, 518-522 (2009). https://doi.org/10.1155/2009/462346
  17. Schumacher, B., Scholle, S., Holzl, J., Khudeir, N., Hess, S., and Muller, C.E., Lignans isolated from Valerian: Identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors. J. Nat. Prod. 65, 1479-1485 (2002). https://doi.org/10.1021/np010464q
  18. Shin, E., Choi, K.M., Yoo, H.S., Lee, C.K., Hwang, B.Y., and Lee, M.K., Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol. Pharm. Bull. 33, 1610-1614 (2010). https://doi.org/10.1248/bpb.33.1610
  19. Xie, L.H., Akao, T., Hamasaki, K., Deyama, T., and Hattori, M., Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora and isolation of Enterococcus faecalis strain PDG-1 responsible of the transformation of pinoresinol to lariciresinol. Chem. Pharm. Bull. 51, 508-515 (2003). https://doi.org/10.1248/cpb.51.508
  20. Xu, B., Han, L., Zheng, Y., Lee, J., and Sung, C., In vitro inhibitory effect of triterpenoidal saponins from Platycodi Radix on pancreatic lipase. Arch. Pharm. Res. 28, 180-185 (2005). https://doi.org/10.1007/BF02977712
  21. Yoshinari, K., Shimazaki, N., Sashida, Y., and Mimaki, Y., Flavanone xyloside and lignans from Prunus jamasakura. Phytochemistry 29, 1675-1678 (1990). https://doi.org/10.1016/0031-9422(90)80144-6
  22. Yun, J.W., Possible anti-obesity therapeutics from nature. Phytochemistry 71, 1625-1641 (2010). https://doi.org/10.1016/j.phytochem.2010.07.011