DOI QR코드

DOI QR Code

Immuno-stimulating Activities of Mannose-rich Polysaccharides Isolated from Korean Black Raspberry Wine

복분자주에서 분리한 Mannan 다당의 면역증진 활성

  • Lee, Ho (Department of Food Science & Biotechnology, Kyonggi University)
  • 이호 (경기대학교 식품생물공학과)
  • Received : 2012.02.04
  • Accepted : 2012.03.06
  • Published : 2012.06.30

Abstract

Polysaccharides isolated from Korean black raspberry wine were examined for their chemical properties and immuno-modulating activities. The molecular mass of RB-1b-I, the main polysaccharide in black raspberry wine, was estimated as 180 kDa and it contained a significant proportion of mannose (76.8%) and 4 different minor component sugars such as galactose (15.8%), arabinose (3.8%), glucose (2.6%) and rhamnose (1.2%). This indicated that RB-1b-I was mainly present as a mannan, which had originated from the cell walls of fermenting yeasts. On the other hand, RB-1b-I induced high levels of macrophage activation as well as mitogenicity regarding murine splenocytes in vitro. The intravenous administration of RB-1b-I significantly augmented NK cytotoxicity against YAC-1 tumor cells. RB-1b-I also showed potent anti-complementary activity in a dose-dependent manner via both alternative and classical pathways. Results indicated that Korean black raspberry wine contains peculiar polysaccharides which provide beneficial immuno-stimulating activities for human health.

한국 전통발효음료 중에 존재하는 특이 다당류의 화학적 특성 및 생물활성을 규명할 목적으로, 농가에서 직접 발효한 복분자주로부터 다당류를 분리하고 이들의 각종 면역증강활성에 대해 검토하였다. 복분자주에 80% ethanol 침전을 행하여 얻어진 조다당획분 RB-0를 이용, 연속적인 3회의 column chromatography를 행하여, 복분자주의 주요 다당인 RB-1b-I으로 정제할 수 있었다. RB-1b-I획분은 HPLC상에서 대칭을 유지하는 단일 peak로 검출되었으며, 분자량은 약 180 kDa으로 평가되었다. 정제다당인 RB-1b-I의 구성당 조성을 확인한 결과, mannose가 76.8%로 주를 이루고 있었으며, 그 외에 galactose(15.8%), arabinose(3.8%), glucose(2.6%) 및 rhamnose(1.2%)의 순으로 함유되어 있었다. 이러한 결과는 복분자 중에 존재하는 주 다당이 발효 효모의 세포벽에서 기원한 mannan임을 추정하게 하였다. 한편 복분자주에서 정제한 다당 RB-1b-I은 in vitro상에서 macrophage의 활성화를 높은 비율로 유도하였으며, 비장세포에 대해 높은 증식능을 보였다. 또한 RB-1b-I을 정맥 투여한 경우, NK cell을 활성화하여 YAC-1 종양세포에 대한 세포독성을 증가시킴이 관찰되었다. 한편 고분자 정제 다당인 RV-1b-I은 비특이적 면역계에 있어 중요 역할을 담당하고 있는 보체계에 대하여 농도 의존적인 활성화 경향을 보였다. 이들은 Ca++ 이온이 제거된 상태에서의 항보체 활성과 antihuman C3를 이용한 2차원 면역전기영동에 의하여 C3 산물을 동정한 결과로부터 보체계의 classical pathway와 alternative pathway양 경로를 모두 경유하여 활성을 나타냄을 확인할 수 있었다. 이상의 결과로부터 복분자주에는 인체 건강에 유익한 면역증진 활성을 제공하는 다당류가 함유되어 있음을 알 수 있었다.

Keywords

References

  1. Wollin SD, Jones PJH. Alcohol, red wine, and cardiovascular disease. J. Nutr. 131: 1401-1404 (2001) https://doi.org/10.1093/jn/131.5.1401
  2. Estruch R. Wine and cardiovascular disease. Food Res. Int. 33: 219-226 (2000) https://doi.org/10.1016/S0963-9969(00)00037-5
  3. Kerry NL, Abbey M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 135: 93-102 (1997) https://doi.org/10.1016/S0021-9150(97)00156-1
  4. Tedesco I, Russo M, Russo P, Iacomino G, Russo GL, Carraturo A, Faruolo C, Moio L, Palumbo R. Antioxidant effect of red wine polyphenols on red blood cells. J. Nutr. Biochem. 11: 114-119 (2000) https://doi.org/10.1016/S0955-2863(99)00080-7
  5. Whitehead TP, Robinson D, Allaway S, Syms J, Hale A. 'Effect of red wine ingestion on the antioxidant capacity of serum. Clin. Chem. 41: 32-35 (1995)
  6. Fuhrman B, Lavy A, Aviram M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am. J. Clin. Nutr. 61: 549-554 (1995) https://doi.org/10.1093/ajcn/61.3.549
  7. Hager A, Howard LR, Prior RL, Brownmiller C. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products. J. Food Sci. 73: 134-140 (2008)
  8. Seeram NP. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agr. Food Chem. 56: 627-629 (2008) https://doi.org/10.1021/jf071988k
  9. Tulio AZ Jr, Reese RN, Wyzogoski FJ, Rinaldi PL, Fu R, Scheerens JC, Miller AR. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry. J. Agr. Food Chem. 56: 1880-1888 (2008) https://doi.org/10.1021/jf072313k
  10. Wang SY, Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agr. Food Chem. 48: 140-146 (2000) https://doi.org/10.1021/jf9908345
  11. Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agr. Food Chem. 48: 5677-5684 (2000) https://doi.org/10.1021/jf000766i
  12. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulated apoptosis of human cancer cells in vitro. J. Agr. Food Chem. 54: 9329-9339 (2006) https://doi.org/10.1021/jf061750g
  13. Chen T, Hwang HJ, Rose ME, Nines RG, Stoner GD. Chemopreventive properties of black raspberries in N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis: Down-regulation of cyclooxygenase-2, inducible nitric oxide synthase, and c-Jun. Cancer Res. 66: 2853-2859 (2006) https://doi.org/10.1158/0008-5472.CAN-05-3279
  14. Jung JW, Son MY, Jung SW, Nam PW, Sung JS, Lee SJ, Lee KG. Antioxidant properties of Korean black raspberry wines and their apoptotic effects on cancer cells. J. Sci. Food Agr. 89: 970-977 (2009) https://doi.org/10.1002/jsfa.3540
  15. Lee SJ, Ahn B. Changes in physicochemical characteristics of black raspberry wines from different regions during fermentation. Korean J. Food Sci. Technol. 41: 662-667 (2009)
  16. Cho JY, Kim SJ, Lee HJ, Kim JY, Lym IJ, Kang SK, Park KH, Moon JH. Isolation and identification of low molecular volatile compounds from ethyl acetate layer of Korean black raspberry (Rubus coreanus Miq.) wine. Korean J. Food Sci. Technol. 43: 558-563 (2011) https://doi.org/10.9721/KJFST.2011.43.5.558
  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  18. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acid. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  20. Jones TM, Albersheim P. A gas chromatography method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharide. Plant Physiol. 49: 926-936 (1972) https://doi.org/10.1104/pp.49.6.926
  21. Suzuki I, Tanaka H, Kinoshita A, Oikawa S, Osawa M, Yadomae T. Effects of orally administered ß-glucan on macrophage function in mice. Int. J. Immunopharmacol. 12: 675-684 (1990) https://doi.org/10.1016/0192-0561(90)90105-V
  22. Miyagawa S, Hirose H, Shirakura R, Naka Y, Nakata S, Kawashima Y, Seya T, Matsumoto M, Uenaka A, Kitamura H. The mechanism of discordant xenograft rejection. Transplantation 46: 825-830 (1995)
  23. Kabat EA, Mayer MM. Complement and complement fixation. pp. 133-240. In: Experimental Immunochemistry. 2nd ed. Charles C (ed). Thomas Publisher, IL, USA (1971)
  24. Shimura K, Ito H, Hibasami H. Screening of host-mediated antitumor polysaccharides by crossed immunoelectrophoresis using fresh human serum. Jpn. J. Pharmacol. 33: 403-408 (1983) https://doi.org/10.1254/jjp.33.403
  25. Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26: 239-256 (2002) https://doi.org/10.1111/j.1574-6976.2002.tb00613.x
  26. Ridley BL, O'Neill MA, Mohnen D. Pectin: Structure, biosynthesis, and oligogalcturonide-related signaling. Phytochemistry 57: 929-67 (2001) https://doi.org/10.1016/S0031-9422(01)00113-3
  27. O'Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell walls. Vol. 2, pp. 415-441. In: Methods In Plant Biochemistry. Carbohydrates. Dey PM (ed). Academic, London, England (1990)
  28. Ishii T. O-Acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol. 113: 1265-1272 (1997) https://doi.org/10.1104/pp.113.4.1265
  29. Engelsen SB, Cros S, Mackie W, Perez S. A molecular builder for carbohydrates: Application to polysaccharides and complex carbohydrates. Biopolymers 39: 417-433 (1996) https://doi.org/10.1002/(SICI)1097-0282(199609)39:3<417::AID-BIP13>3.3.CO;2-R
  30. Male D, Brostoff J, Roth DB, Roitt I. Cells, tissues, and organs of the immune system. pp. 19-58. In: Immunology. 7th ed. Mosby, St. Louis, MO, USA (2006)
  31. Keller R, Keist R, Wechsler A, Leist TP, van der Meide PH. Mechanism of macrophage-mediated tumor cell killing: A comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int. J. Cancer 46: 682-686 (1990) https://doi.org/10.1002/ijc.2910460422
  32. Nathan CF, Murray HW, Cohen ZA. Current concepts: The macrophage as an effector cell. New Engl. J. Med. 303: 662-665 (1980) https://doi.org/10.1056/NEJM198009183031202
  33. Shida K, Suzuki T, Kiyoshima-Shibata J, Shimada S, Nanno M. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clin. Vaccine Immunol. 13: 997-1003 (2006) https://doi.org/10.1128/CVI.00076-06
  34. Hunter CA, Chizzonite R, Remington JS. IL-1 beta is required for IL-12 to induce production of IFN-gamma by NK cells. A role for IL-1 beta in the T cell-independent mechanism of resistance against intracellular pathogens. J. Immunol. 155: 4347-4354 (1995)
  35. Saito H, Tomioka H, Sato K. PSK, a polysaccharide from Coriolus versicolor, enhances oxygen metabolism of murine peritoneal macrophages and the host resistance to listerial infection. J. Gen. Microbiol. 134: 1029-1035 (1988)
  36. Kwon MH, Sung HJ. Characteristics of immune response by polysaccharides with complement system activity. Food Sci. Indus. 30: 30-43 (1997)
  37. Jung YJ, Chun H, Kim KI, An JH, Shin DH, Hong BS, Cho HY, Yang HC. Purified polysaccharide activating the complement system from leaves of Diospyos kaki L. Korean J. Food Sci. Technol. 34: 879-884 (2002)
  38. Whaley K. The complement system. pp. 1-35. In: Complement in Health and Disease. Whaley K (ed). MTP Press, Lancaster, PA, USA (1986)
  39. Kim JH, Shin KS, Lee H. Characterization and action mode of anti-complementary substance prepared from Lactobacillus plantarum. Korean J. Food Sci. Technol. 34: 290-295 (2002)
  40. Hudson L, Hay FC. Two dimensional or crossed immunoelectrophoresis. pp. 244-246. In: Practical Immunology. Blackwell Scientific Publications, Oxford, England (1989)

Cited by

  1. Anti-inflammatory Effect of Polysaccharide Derived from Commercial Kanjang on Mast Cells vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.569
  2. Total sugar contents of edible and medicinal mushrooms comparative analysis by the extraction method vol.12, pp.4, 2014, https://doi.org/10.14480/JM.2014.12.4.299