DOI QR코드

DOI QR Code

Measuring Connectivity in Heterogenous Landscapes: a Review and Application

이질적 경관에서의 연결성 측정: 리뷰 및 적용

  • 송원경 (한국환경정책.평가연구원) ;
  • 김은영 (한국환경정책.평가연구원) ;
  • 이동근 (서울대학교 조경.지역시스템공학부)
  • Received : 2012.04.03
  • Accepted : 2012.04.30
  • Published : 2012.06.30

Abstract

The loss of connectivity and fragmentation of forest landscapes are seriously hindering dispersal of many forest-dwelling species, which may be critical for their viability and conservation by decreasing habitat area and increasing distance among habitats. For understanding their environmental impacts, numerous spatial models exist to measure landscape connectivity. However, general relationships between functional connectivity and landscape structure are lacking, there is a need to develop landscape metrics that more accurately measure landscape connectivity in whole landscape and individual patches. We reviewed functional and structural definition of landscape connectivity, explained their mathematical connotations, and applied representative 13 indices in 3 districts of Seoul having fragmented forest patches with tits, the threshold distance was applied 500m by considering the dispersal of tits. Results of correlation and principal component analysis showed that connectivity indices could be divided by measurement methods whether they contain the area attribute with distance or not. Betweenness centrality(BC), a representative index measuring distance and distribution among patches, appreciated highly stepping stone forest patches, and difference of probability of connectivity(dPC), an index measuring including area information, estimated integrated connectivity of patches. Therefore, for evaluating landscape connectivity, it is need to consider not only general information of a region and species' characteristics but also various measuring methods of landscape connectivity.

Keywords

References

  1. 김명수, 2001, 파편화된 서식처 복원을 위한 기초이론 고찰, 한국환경복원녹화기술학회지, 4, 52-61.
  2. 서울특별시, 2010, 2010 도시생태현황도 정비제작 -2차년도-, 서울특별시.
  3. 송원경, 2011, 공간그래프 이론을 적용한 삵 서식지 네트워크 모형 개발, 서울대학교 박사학위논문.
  4. 안동만, 김명수, 2003, 환경친화적인 도시공원녹지계획 연구 - 생물서식처 연결성 향상을 위한 서울시 녹지조성 방안을 중심으로 -. 한국조경학회지, 31, 34-41.
  5. 이동근, 송원경, 2008, 삵의 서식지 적합성 평가를 위한 분석단위 설정 및 보전지역 선정 -충청도 지역을 중심으로, 한국조경학회지, 36, 64-72.
  6. 이인성, 윤은주, 2008, 도시녹지 평가를 위한 경관지수의 스케일 민감성 분석, 한국조경학회지, 36, 69-79.
  7. 임신재, 손승훈, 김규중, 2011, 활엽수림에 설치한 인공새집을 이용한 박새류 번식 생태, 한국임학회지, 100, 397-401.
  8. 정용문, 김선태, 김명수, 2002, 대전시 녹지계획을 위한 연결성 분석에 대한 연구, 한국환경복원녹화기술학회지, 5, 14-23.
  9. Adriaensen, F., 2003, The application of 'leastcost' modelling as a functional landscape model, Landscape and Urban Planning, 64, 233-247. https://doi.org/10.1016/S0169-2046(02)00242-6
  10. Angold, P.G., Sadler, J.P., Hill, M.O., Pullin, A., Rushton, S., Austin, K., Small, E., Wood, B., Wadsworth, R., Sanderson, R. and Thompson, K., 2006, Biodiversity in urban habitat patches, Sci Total Environ, 360, 196-204. https://doi.org/10.1016/j.scitotenv.2005.08.035
  11. Baguette, M. and Dyck, H., 2007, Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal, Landscape Ecology, 22, 1117-1129. https://doi.org/10.1007/s10980-007-9108-4
  12. Baranyi, G., Saura, S., Podani, J. and Jordan, F., 2011, Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices, Ecological Indicators, 11, 1301-1310. https://doi.org/10.1016/j.ecolind.2011.02.003
  13. Belisle, M., 2005, Measuring Landscape Connectivity: The Challenge of Behavioral Landscape Ecology, Ecology, 86, 1988-1995. https://doi.org/10.1890/04-0923
  14. Benton, T.G., Vickery, J.A. and Wilson, J.D., 2003, Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol, 18, 182-188. https://doi.org/10.1016/S0169-5347(03)00011-9
  15. Broquet, T., Ray, N., Petit, E., Fryxell, J.M. and Burel, F., 2006, Genetic isolation by distance and landscape connectivity in the American marten (Martes americana), Landscape Ecology, 21, 877-889. https://doi.org/10.1007/s10980-005-5956-y
  16. Bunn, A.G., Urban, D.L. and Keitt, T.H., 2000, Landscape connectivity: A conservation application of graph theory, J Environ Manage, 59, 265-278. https://doi.org/10.1006/jema.2000.0373
  17. CastellOn, T.D. and Sieving, K.E., 2006, An Experimental Test of Matrix Permeability and Corridor Use by an Endemic Understory Bird, Conservation Biology, 20, 135-145. https://doi.org/10.1111/j.1523-1739.2006.00332.x
  18. Collinge, S.K. and Forman, R.T.T., 1998, A conceptual model of land conversion processes: predictions and evidence from a microlandscape experiment with grass insects, Oikos, 82, 66-84. https://doi.org/10.2307/3546918
  19. Coulon, A., Cosson, J.F., Angibault, J.M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S. and Hewison, A.J., 2004, Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach, Mol Ecol, 13, 2841-50. https://doi.org/10.1111/j.1365-294X.2004.02253.x
  20. Desrochers, A., Belisle, M., Morand-Ferron, J. and Bourque, J., 2011, Integrating GIS and homing experiments to study avian movement costs, Landscape Ecology, 26, 47-58. https://doi.org/10.1007/s10980-010-9532-8
  21. Dingemanse, N.J., Both, C., van Noordwijk, A.J., Rutten, A.L. and Drent, P.J., 2003, Natal dispersal and personalities in great tits (Parus major), Proc Biol Sci, 270, 741-7. https://doi.org/10.1098/rspb.2002.2300
  22. Driezen, K., Adriaensen, F., Rondinini, C., Doncaster, C.P. and Matthysen, E., 2007, Evaluating least-cost model predictions with empirical dispersal data: A casestudy using radiotracking data of hedgehogs (Erinaceus europaeus), Ecological Modelling, 209, 314-322. https://doi.org/10.1016/j.ecolmodel.2007.07.002
  23. Epps, C.W., Wehausen, J.D., Bleich, V.C., Torres, S.G. and Brashares, J.S., 2007, Optimizing dispersal and corridor models using landscape genetics, Journal of Applied Ecology, 44, 714-724. https://doi.org/10.1111/j.1365-2664.2007.01325.x
  24. Fall, A., Fortin, M.-J., Manseau, M. and O'Brien, D., 2007, Spatial Graphs: Principles and Applications for Habitat Connectivity, Ecosystems, 10, 448-461. https://doi.org/10.1007/s10021-007-9038-7
  25. Forester, J.D., Ives, A.R., Turner, M.G., Anderson, D.P., Fortin, D., Beyer, H.L., Smith, D.W. and Boyce, M.S., 2007, State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park, Ecological Monographs, 77, 285-299. https://doi.org/10.1890/06-0534
  26. Forman, R.T.T. and Baudry, J., 1984, Hedgerows and hedgerow networks in landscape ecology, Environmental Management, 8, 495-510. https://doi.org/10.1007/BF01871575
  27. Freeman, L.C., 1979, Centrality in Social Networks Conceptual Clarification, Social Networks, 1, 215-239.
  28. Gobeil, J.-F. and Villard, M.-A., 2002, Permeability of three boreal forest landscape types to bird movements as determined from experimental translocations, Oikos, 98, 447-453. https://doi.org/10.1034/j.1600-0706.2002.980309.x
  29. Goodwin, B.J., 2003, Is landscape connectivity a dependent or independent variable, Landscape Ecology, 18, 687-699. https://doi.org/10.1023/B:LAND.0000004184.03500.a8
  30. Gurrutxaga, M., Rubio, L. and Saura, S., 2011, Key connectors in protected forest area networks and the impact of highways: A transnational case study from the Cantabrian Range to the Western Alps (SW Europe), Landscape and Urban Planning, 101, 310-320. https://doi.org/10.1016/j.landurbplan.2011.02.036
  31. Gustafson, E.J. and Gardner, R.H., 1996, The Effect of Landscape Heterogeneity on the Probability of Patch Colonization, Ecology, 77, 94-107. https://doi.org/10.2307/2265659
  32. Hanski, I., 1998, Metapopulation dynamics, Nature, 396, 41-49. https://doi.org/10.1038/23876
  33. Hanski, I., 1999, Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes, Oikos, 87, 209-219. https://doi.org/10.2307/3546736
  34. Hanski, I., 2001, Spatially realistic theory of metapopulation ecology. Naturwissenschaften, 88, 372-381. https://doi.org/10.1007/s001140100246
  35. James, P.M.A., Rayfield, B., Fortin, M.-J., Fall, A. and Farley, G., 2005, Reserve network design combining spatial graph theory and species' spatial requirements, Geomatica, 59, 121-129.
  36. Kindlmann, P. and Burel, F., 2008, Connectivity measures: a review, Landscape Ecology, 23, 879-890.
  37. Krebs, J.R., N.B. Davies, 1981, An Introduction th Behavioural Ecology, Blackwell Science Inc, USA.
  38. Kusak, J., Huber, D., Gomercie, T., Schwaderer, G. and Guzvica, G., 2008, The permeability of highway in Gorski kotar (Croatia) for large mammals, European Journal of Wildlife Research, 55, 7-21.
  39. LaRue, M.A. and Nielsen, C.K., 2008, Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods, Ecological Modelling, 212, 372-381. https://doi.org/10.1016/j.ecolmodel.2007.10.036
  40. Levins, R., 1969, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bull. Entom. Soc. Amer., 15, 237-240.
  41. Lookingbill, T.R., Gardner, R.H., Ferrari, J.R. and Keller, C.E., 2010, Combining a dispersal model with network theory to assess habitat connectivity, Ecological Applications, 20, 427-441. https://doi.org/10.1890/09-0073.1
  42. Matthysen, E., Van de Casteele, T. and Adriaensen, F., 2005, Do sibling tits (Parus major, P. caeruleus) disperse over similar distances and in similar directions? Oecologia, 143, 301-7. https://doi.org/10.1007/s00442-004-1760-7
  43. Merriam, G., 1984, Connectivity: a fundamental ecological characteristic of landscape pattern. - In: Brandt, J. and Agger P. (des), Proceedings of the 1st international seminar on methodology in landscape ecological research and planning, Roskilde Univ., Denmark, pp. 5-15.
  44. Minor, E.S. and Lookingbill, T.R., 2010, A multiscale network analysis of protectedarea connectivity for mammals in the United States, Conserv Biol, 24, 1549-58. https://doi.org/10.1111/j.1523-1739.2010.01558.x
  45. Minor, E.S. and Urban, D.L., 2007, Graph theory as a proxy for spatially explicit population models in conservation planning, Ecological Applications, 17, 1771-1782. https://doi.org/10.1890/06-1073.1
  46. Moilanen, A. and Hanski, I., 1998, Metapopulation dynamics: Effects of habitat quality and landscape structure, Ecology, 79, 2503-2515. https://doi.org/10.1890/0012-9658(1998)079[2503:MDEOHQ]2.0.CO;2
  47. O'Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H. and Graham, R.L., 1988, Indices of landscape pattern, Landscape Ecology, 1, 153-162. https://doi.org/10.1007/BF00162741
  48. O'Brien, D., Manseau, M., Fall, A. and Fortin, M.-J., 2006, Testing the importance of spatial configuration of winter habitat for woodland caribou: An application of graph theory, Biological Conservation, 130, 70-83. https://doi.org/10.1016/j.biocon.2005.12.014
  49. Pascual-Hortal, L. and Saura, S., 2008, Integrating landscape connectivity in broad-scale forest plann.ng through a new graph-based habitat availability methodology: application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain), European Journal of Forest Research, 127, 23-31. https://doi.org/10.1007/s10342-006-0165-z
  50. Pither, J. and Taylor, P.D., 1998, An experimental assessment of landscape connectivity, Oikos, 83, 166-174. https://doi.org/10.2307/3546558
  51. Pullinger, M.G. and Johnson, C.J., 2010, Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information, Landscape Ecology, 25, 1547-1560. https://doi.org/10.1007/s10980-010-9526-6
  52. Ray, N., Lehmann, A. and Loly, P., 2002, Modeling spatial distribution of amphibian populations: A GIS approach based on habitat matrix permeability, Biodiversity and Conservation, 11, 2143-2165. https://doi.org/10.1023/A:1021390527698
  53. Rayfield, B., Fortin, M.-J. and Fall, A., 2009, The sensitivity of least-cost habitat graphs to relative cost surface values, Landscape Ecology, 25, 519-532.
  54. Ricotta, C., Carranza, M.L., Avena, G. and Blasi, C., 2000, Quantitative comparison of the diversity of landscapes with actual vs. potential natural vegetation, Applied Vegetation Science, 3, 157-162. https://doi.org/10.2307/1478994
  55. Ricketts, T.H., 2001, The matrix matters: Effective isolation in fragmented landscapes, The American Naturalist, 158, 87-99. https://doi.org/10.1086/320863
  56. Rustigian, H.L., Santelmann, M.V. and Schumaker, N.H., 2003, Assessing the potential impacts of alternative landscape designs on amphibian population dynamics, Landscape Ecology, 18, 65-81. https://doi.org/10.1023/A:1022936613275
  57. Saura, S. and Pascual-Hortal, L., 2007, A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study, Landscape and Urban Planning, 83, 91-103. https://doi.org/10.1016/j.landurbplan.2007.03.005
  58. Saura, S., Vogt, P., Velazquez, J., Hernando, A. and Tejera, R., 2011, Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses, Forest Ecology and Management, 262, 150-160. https://doi.org/10.1016/j.foreco.2011.03.017
  59. Schick, R.S., Loarie, S.R., Colchero, F., Best, B.D., Boustany, A., Conde, D.A., Halpin, P.N., Joppa, L.N., McClellan, C.M. and Clark, J.S., 2008, Understanding movement data and movement processes: current and emerging directions, Ecol Lett, 11, 1338-50. https://doi.org/10.1111/j.1461-0248.2008.01249.x
  60. Singleton, P.H., 2001, Using weighted distance and least-cost corridor analysis to evaluate regional-scale large carnivore habitat connectivity in Washington, ICOET, pp. 583-594.
  61. Singleton, P.H., Gaines, W.L. and Lehmkuhl, J.F., 2002, Landscape Permeability for Large Carnivores in Washington: A Geographic Information System Weighted-Distance and Least-Cost Corridor Assessment, U.S. Department of Agriculture, Pacific Northewest Research Station, Portland.
  62. Szulkin, M. and Sheldon, B.C., 2008, Dispersal as a means of inbreeding avoidance in a wild bird population, Proc Biol Sci, 275, 703-11. https://doi.org/10.1098/rspb.2007.0989
  63. Taylor, P.D., Fahrig, L., Henein, K. and Merriam, G., 1993, Connectivity is a element of landscape structure, Oikos, 68, 571-573. https://doi.org/10.2307/3544927
  64. Tischendorf, L., 2001, Can landscape indices predict ecological processes consistently, Landscape Ecology, 16, 235-254. https://doi.org/10.1023/A:1011112719782
  65. Tischendorf, L. and Fahrig, L., 2000a, How should we measure landscape connectivity? Landscape Ecology, 15, 633-641. https://doi.org/10.1023/A:1008177324187
  66. Tischendorf, L. and Fahrig, L., 2000b, On the usage and measurement of landscape connectivity, Oikos, 90, 7-19. https://doi.org/10.1034/j.1600-0706.2000.900102.x
  67. Turner, M.G., 1989, Landscape ecology: the effect of pattern on process, Annual review of ecology and systematics, 20, 171-197. https://doi.org/10.1146/annurev.es.20.110189.001131
  68. Urban, D. and Keitt, T., 2001, Landscape connectivity: A graph-theoretic perspective, Ecology, 82, 1205-1218. https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
  69. Verbeylen, G., Bruyn, L.D., Adriaensen, F. and Matthysen, E., 2003, Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecology, 18, 791-805. https://doi.org/10.1023/B:LAND.0000014492.50765.05
  70. Verheyen, K., Vellend, M., Calster, H.V., Peterken, G. and Hermy, M., 2004, Metapopulation dynamics in changing landscapes: A new spatially realistic model for forest plants, Ecology, 82, 3302-3312.
  71. Verhulst, S., Perrins, C.M. and Riddington, R., 1997, Natal dispersal of great tits in a patchy environment, Ecology, 78, 864-872. https://doi.org/10.1890/0012-9658(1997)078[0864:NDOGTI]2.0.CO;2
  72. Whitcomb, R.F., Robbins, C.S., Lynch, J.F., Whitcomb, B.L., Klimkiewicz, M.K. and Bystrak, D., 1981, Effects of forest fragmentation on avifauna of the Eastern Deciduous Forest, Springer-Verlag, New York, USA.
  73. Winfree, R., Dushoff, J., Crone, E.E., Schultz, C.B., Budny, R.V., Williams, N.M. and Kremen, C., 2005, Testing Simple Indices of Habitat Proximity, The American Naturalist, 165, 707-717. https://doi.org/10.1086/430009
  74. With, K.A., Gardner, R.H. and Turner, M.G., 1997, Landscape connectivity and population distributions in heterogeneous environments, Oikos, 78, 151-169. https://doi.org/10.2307/3545811
  75. Zetterberg, A., Mortberg, U.M. and Balfors, B., 2010, Making graph theory operational for landscape ecological assessments, planning, and design, Landscape and Urban Planning, 95, 181-191. https://doi.org/10.1016/j.landurbplan.2010.01.002
  76. Zozaya, E.L., Brotons, L. and Saura, S., 2011, Recent fire history and connectivity patterns determine bird species distribution dynamics in landscapes dominated by land abandonment, Landscape Ecology, 27, 171-184.

Cited by

  1. 생태네트워크로서의 토양네트워크(Gold Network) 제안 vol.16, pp.1, 2012, https://doi.org/10.13087/kosert.2013.16.1.245
  2. 통계모형을 활용한 박새류의 서식지 연결성 평가: 서울시 도시생태현황도 자료를 중심으로 vol.22, pp.3, 2012, https://doi.org/10.14249/eia.2013.22.3.219
  3. 전국단위의 포유류 생물다양성우수지역 분석 연구 vol.23, pp.6, 2012, https://doi.org/10.14249/eia.2014.23.6.453
  4. 산림 생태계 서비스를 고려한 산림 보전가치 평가 - 가평군을 대상으로 - vol.24, pp.5, 2015, https://doi.org/10.14249/eia.2015.24.5.420
  5. Time Series Change Analysis of Green Area and Green-Network Using Visual Analysis Model for Landscape -A Case Study of Daegu and Kwangju City - vol.22, pp.2, 2018, https://doi.org/10.34272/forest.2018.22.2.003
  6. 매개중심성 분석을 활용한 서울시 미집행공원 내 사유지 보전 우선순위 평가 vol.110, pp.1, 2012, https://doi.org/10.14578/jkfs.2021.110.1.22