References
- J. R. Artalejo and A. Gomez-Corral, Retrial Queueing Systems, A Computational Approach, Springer-Verlag, Berlin, 2008.
- G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman and Hall, London, 1997.
- B. S. Greenberg and R. W. Wolff, An upper bound on the performance of queues with returning customer, J. Appl. Probab. 24 (1987), 466 - 475. https://doi.org/10.2307/3214270
- A. A. Fredericks and G. A. Reisner, Approximations to stochastic service systems with an application to a retrial model, Bell Sys. Tech. J. 58 (1979), 557 - 576. https://doi.org/10.1002/j.1538-7305.1979.tb02235.x
- J. Riordan, Stochastic Service Systems, Wiley, Nework, 1962.
- H. C. Tijms, M. H. Van Hoorn and A. Federgruen, Approximations for the steady-state probabilities in the M/G/c queue, Adv. Appl. Probab. 13 (1981), 186 - 206. https://doi.org/10.2307/1426474
- H. C. Tijms, A First Course in Stochastic Models, John Wiley & Sons, 2003.
- M. Miyazawa, Approximation of the queue-length distribution of an M/G/s queue by the basic equations, J. Appl. Probab. 23 (1986), 443 - 458. https://doi.org/10.2307/3214186
- D. W. Choi, N. K. Kim and K. C. Chae, A two-moment approximation for the GI/G/c queue with finite capacity, INFORMS J. on Computing 17 (2005), 75 - 81 https://doi.org/10.1287/ijoc.1030.0058
- Y. W. Shin, Monotonicity properties in various retrial queues and their applications, Queueing Systems 53 (2006), 147 - 157 https://doi.org/10.1007/s11134-006-6702-0