DOI QR코드

DOI QR Code

Metagenomic Approach on the Eukaryotic Plankton Biodiversity in Coastal Water of Busan (Korea)

부산 연안역의 진핵플랑크톤 종다양성에 대한 메타게놈 분석 연구

  • Yoon, Ji-Mie (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Jee-Eun (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Sang-Rae (Marine Research Institute, Pusan National University) ;
  • Rho, Tae-Keun (Marine Research Institute, Pusan National University) ;
  • Lee, Jin-Ae (School of Environmental Science and Engineering, Inje University) ;
  • Chung, Ik-Kyo (Department of Oceanography, Pusan National University) ;
  • Lee, Tong-Sup (Department of Oceanography, Pusan National University)
  • 윤지미 (부산대학교 지구환경시스템학부) ;
  • 이지은 (부산대학교 지구환경시스템학부) ;
  • 이상래 (부산대학교 해양연구소) ;
  • 노태근 (부산대학교 해양연구소) ;
  • 이진애 (인제대학교 환경공학부) ;
  • 정익교 (부산대학교 해양학과) ;
  • 이동섭 (부산대학교 해양학과)
  • Received : 2011.11.14
  • Accepted : 2012.02.10
  • Published : 2012.05.31

Abstract

The species composition of plankton is essential to understand the material and energy cycling within marine ecosystem. It also provides the useful information for understanding the properties of marine environments due to its sensitivity to the physicochemical characteristics and variability of water masses. In this study we adopted metagenomics to evaluate eukaryotic plankton species diversity from coastal waters off Busan. Characteristics of water masses at sampling sites is expected to be very complex due to the mixing of various water masses; Nakdong River runoff, Changjiang diluted water (CDW), South Sea coastal water, and Tsushima warm current. 18S rDNA clone libraries were constructed from surface waters at the three sites off Busan. Clone libraries revealed 94 unique phylotypes from 370 clones; Dinophyceae(42 phylotypes), Ciliophora(15 phylotypes), Bacillariophyta(7 phylotypes), Chlorophyta(2 phylotypes), Haptophyceae(1 phylotype), Metazoa(Arthropoda( 17 phylotypes), Chaetognatha(1 phylotypes), Cnidaria(2 phylotypes), Chordata(1 phylotype)), Rhizaria (Acantharea(2 phylotypes), Polycystinea(1 phylotype)), Telonemida(1 phylotype), Fungi(2 phylotypes). The difference in species diversity at the closely located three sites off Busan may be attributed to the various physicochemical properties of water masses at these sites by the mixture of water masses of various origins. Metagenomic study of species composition may provide useful information for understanding marine ecosystem of coastal waters with various physicochemical properties in the near feature.

플랑크톤의 종조성에 대한 정보는 해양 생태계 내에서 물질과 에너지 순환을 이해 하는데 필수적이다. 또한 수층의 물리화학적 특성과 변동에 민감하기 때문에 해양환경 특성을 이해하는데 중요한 정보를 제공한다. 본 연구는 메타게놈 분석 기법(metagenomics)을 적용하여 낙동강 유출수, 장강 희석수, 남해 연안수, 쓰시마 난류수 등의 혼합으로 복잡한 환경특성을 가질 것으로 예상되는 부산 연안역의 수괴 내에 존재하는 플랑크톤 종다양성을 분석하였다. 표층 해수에서 18S rDNA 클론라이브러리를 구축하였고 세 정점에서 분석된 370개의 클론들 중에서 94개의 phylotype들을 발굴하였다. 계통분석 결과 phylotype들은 Dinophyceae(42개), Ciliophora(15개), Bacillariophyta(7개), Chlorophyta(2개), Haptophyceae(1개), Metazoa(Arthropoda(17개), Chaetognatha(1개), Cnidaria(2개), Chordata(1개)), Rhizaria(Acantharea(2개),Polycystinea(1개)), Telonemida(1개), Fungi(2개) 등의 다양한 계통군들에 속하는 것으로 나타났다. 근접하게 위치한 세 정점에서 나타난 플랑크톤 종조성 차이는 이들 정점들이 여러 기원의 수괴(water mass) 혼합에 따른 다양한 물리화학적 환경요인의 영향에 기인한 것으로 판단된다. 향후 메타게놈 분석 기법을 통한 플랑크톤 종조성 연구는 다양한 물리화학적 특성을 가진 연안 해양생태계를 이해하는데 유용할 것으로 판단된다.

Keywords

References

  1. 강소라, 임동일, 김소영, 유해수, 2010. 북동중국해 내대륙붕 코아 퇴적물의 저서유공충 군집 특성과 고해양환경 변화. 지질학회지, 46: 395-411.
  2. 권기영, 이평강, 박철, 문창호, 박미옥, 2001. 섬진강 하구역에서 염분경사에 따른 동식물플랑크톤의 현존량 및 종조성. 한국해양학회지 바다, 6: 93-102.
  3. 김보경, 이상래, 이진애, 정익교, 2010. 분자 모니터링을 이용한 서낙동강과 남해 연안 플랑크톤 군집 분석. 한국해양학회지 바다, 15: 25-36.
  4. 김요혜, 이준백, 2003. 제주도 남부해역의 부유성 섬모충류의 종조성과 계절 변동. 한국해양학회지 바다, 8: 59-69.
  5. 김일남, 이동섭, 2004. 하계 대한해협 저층냉수의 물리화학적인 특성 및 기원. Ocean Polar Res., 26: 595-606. https://doi.org/10.4217/OPR.2004.26.4.595
  6. 김형신, 정민민, 2004. 한국연안해역의 착편모조 분포. 한국양식학회지, 17: 133-138.
  7. 문은영, 김영옥, 공동수, 한명수, 2008. 팔당호 유입부 경안천의 섬모충 플랑크톤 계절적 분포. 한국하천호수학회지, 41: 11-18.
  8. 문성용, 오현주, 서호영, 2010. 남해 연안 동물플랑크톤 군집의 계절변동. Ocean Polar Res., 32: 411-426. https://doi.org/10.4217/OPR.2010.32.4.411
  9. 문창호, 최혜지, 1991. 낙동강 하구 환경특성 및 식물플랑크톤의 군집구조에 관한 연구. 한국해양학회지, 26: 144-154.
  10. 심재형, 양성렬, 이원호, 1989. 춘계 한국 동해 남부해역에서의 식물 수문학적 수역과 질산염약층의 수직양상. 한국해양학회지, 24: 15-28.
  11. 심재형, 여환구, 박종규, 1995. 한국 동해 남부해역의 일차생산계. II. 식물플랑크톤 군집구조. 한국해양학회지, 30: 163-169.
  12. 오현주, 이용화, 양준혁, 김승한, 2007. 2004년 하계 남해안 해황과 식물플랑크톤의 분포 특성. 한국지리정보학회지, 10: 40-48.
  13. 정익교, 강윤향, 김영진, 권오섭, 1998. 한국 연안 초미세플랑크톤 생태: 1. 대한해협 서수도 해역. Algae, 13: 101-107.
  14. 정해진, 유영두, 김재성, 2002. 전북 새만금 남쪽 해역의 유해성 적조 발생연구. 2. 1999년도 여름-가을 종속영양성 와편모류와 섬모충류의 시간적 변화. 한국해양학회지 바다, 7: 140-147.
  15. 최 상, 1969. 한국해역의 식물풀랭크톤의 연구. 4. 동해, 남해 및 서해해역의 식물플랑크톤. 한국해양학회지, 4: 49-67.
  16. 최정민, 강소라, 박일흠, 이연규, 2010. 천수만의 표층 퇴적물 및 저서 유공충의 분포 특성과 퇴적환경. J. Paleont. Soc. Korea., 26: 107-128.
  17. 최철만, 김진호, 김원일, 이종식, 정구복, 이정택, 문성기, 2007. 낙동강하류의 식물플랑크톤상과 군집구조. 한국환경농학회지, 26: 159-170.
  18. Agatha, S., M.C. Strüder-Kypke and A. Beran, 2004. Morphologic and genetic variability in the marine planktonic ciliate Laboea strobila Lohmann, 1908 (Ciliophora, Oligotrichia), with notes on its ontogenesis. J. Eukaryot. Microbiol., 51: 267-281. https://doi.org/10.1111/j.1550-7408.2004.tb00567.x
  19. Bowler, C., M.K. David and R.C. Rita, 2009. Microbial oceanography in a sea of opportunity. Nature, 459: 180-184. https://doi.org/10.1038/nature08056
  20. Bianchi, F., F. Acri, F. Bernardi Aubry, A. Boldrin, E. Camatti, D. Cassin and A. Comaschi, 2003. Can plankton communities be considered as bio-indicators of water quality in the laggon of Venice?. Mar. Pollut. Bull., 46: 964-971. https://doi.org/10.1016/S0025-326X(03)00111-5
  21. Collins, A.G., P. Schuchert, A.C. Marques, T. Jankowski, M. Medina and B. Schierwater, 2006. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst. Biol., 55: 97-115. https://doi.org/10.1080/10635150500433615
  22. DeLong, E.F., 2009. The microbial ocean from genomes to biomes. Nature, 459: 200-206. https://doi.org/10.1038/nature08059
  23. Duffy, J.E. and J.J. Stachowicz, 2006. Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Mar. Ecol. Prog. Ser., 311: 179-189. https://doi.org/10.3354/meps311179
  24. Edvardsen, B. and L.K. Medlin, 2007. Molecular systemtics of Haptophyta. Syst. Assoc. Spec., 75: 183-196.
  25. Falkowski, P.G., R.T. Barber and V. Smetacek, 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 10: 200-206.
  26. Gilg, I.C., L.A. Amaral-Zettler, P.D. Countway, S. Moorhi, A. Schnetzer and D.A. Caron, 2010. Phylogenetic affiliations of mesopelagic Acantharia and Antharian-like environmental 18S rDNA genes off the southern California coast. Protist, 161: 197- 211. https://doi.org/10.1016/j.protis.2009.09.002
  27. Guillou, L., M. Viprey, A. Chambouvet, R.M. Welsh, A.R. Kirkham, R. Massana, D.J. Scanlan and A.Z. Worden, 2008. Widespread occurrence and genetic diversity of marine parasitoids belonging to syndiniales (Alveolata). Environ. Microbiol., 10: 3349-3365. https://doi.org/10.1111/j.1462-2920.2008.01731.x
  28. Hoppenrath, M., T.R. Bachvaroff, S.M. Handy, C.F. Delwiche and B.S. Leander, 2009. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences. BMC Evol. Biol., 9: 116. https://doi.org/10.1186/1471-2148-9-116
  29. Huang, C. and Y. Qi, 1997. The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans (Dinophyceae) in Dapeng Bay, the South China Sea. J. Plankton Res., 19: 303-318. https://doi.org/10.1093/plankt/19.3.303
  30. Itaki, T., 2003. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea. Mar. Micropaleontol., 47: 253-270. https://doi.org/10.1016/S0377-8398(02)00119-6
  31. Jeanmougin, F., J.D. Thompson, M. Gouy, D.G. Higgins and T.J. Gibson, 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci., 23: 403-405. https://doi.org/10.1016/S0968-0004(98)01285-7
  32. Jones, E.B.G., 2011. Are there more marine fungi to be described?. Botanica Marina, 54: 343-354.
  33. Kim, E. et al., 2011. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc. Natl. Acad. Sci. U.S.A., 108: 1496-1500. https://doi.org/10.1073/pnas.1013337108
  34. Kim, Y.O. and M.C. Jang, 2008. Temporal distribution of planktonic Ciliates in Jangmok Bay, south coast of Korea. Ocean Polar Res., 30: 419-426. https://doi.org/10.4217/OPR.2008.30.4.419
  35. Lee, S.-R., J.H. Oak and I.K. Chung and J.A. Lee, 2010. Effective molecular examination of eukaryotic plankton species diversity in environmental seawater using environmental PCR, PCR-RFLP and sequencing. J. Appl. Phycol., 22: 699-707. https://doi.org/10.1007/s10811-010-9509-7
  36. Leppard, G.G. and M. Munawar, 1992. The ultrastructural indicators of aquatic ecosystem health. J. Aquat. Anim. Health, 1: 309-317.
  37. Lopez-Garcia, P., F. Rodriguez-Valera, C. Pedros-Alio and D. Moreira, 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409: 603-607. https://doi.org/10.1038/35054537
  38. Louie, L.W., S.T. Haley, E.D. Orchard, C.J. Gobler and S.T. Dyhrman, 2011. Nutrient-regulated transcriptional responses in the brown tide-forming alga Aureococcus anophagefferens. Environ. Microbiol., 13: 468-81. https://doi.org/10.1111/j.1462-2920.2010.02351.x
  39. Matheny, P.B. et al., 2007. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol., 43: 430-451. https://doi.org/10.1016/j.ympev.2006.08.024
  40. McDonald, S.M., J.N. Plant and A.Z. Worden, 2010. The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of Micromonas. Mol. Biol. Evol., 27: 2268-2283. https://doi.org/10.1093/molbev/msq113
  41. Maddison, W.P. and D.R. Maddison, 1991. MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, USA.
  42. Medlin, L.K., H.J. Elwood and S. Stickel, 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71: 491-499. https://doi.org/10.1016/0378-1119(88)90066-2
  43. Medlin, L.K., A.G. Sáez and J.R. Young, 2008. A molecular clock for Coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Mar. Micropaleontol., 67: 69-86. https://doi.org/10.1016/j.marmicro.2007.08.007
  44. Monier, A., R.M. Welsh, C. Gentemann, G. Weinstock, E. Sodergren, E. Virginia Armbrust, J.A. Eisen and A.Z. Worden, 2012. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ. Microbiol., 14: 162-176. https://doi.org/10.1111/j.1462-2920.2011.02576.x
  45. Montani, S., S. Pithakpol and K. Tada, 1998. Nutrient regeneration in coastal sea by Noctiluca scintillans, a red tide causing dinoflagellate. J. Mar. Biotechnol., 6: 224-228.
  46. Moon-van der Staay, S.Y., R. De Wachter and D. Vaulot, 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409: 607-610. https://doi.org/10.1038/35054541
  47. Not, F., J. del Campo, V. Balagué, C. de Vargas and R. Massana, 2009. New insights into the diversity of marine picoeukaryotes. PLoS ONE, 4: e7143. https://doi.org/10.1371/journal.pone.0007143
  48. Palenik, B. et al., 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Nati. Acad. Sci. U.S.A., 104: 7705-7710. https://doi.org/10.1073/pnas.0611046104
  49. Papillon, D., Y. Perez, X. Caubit and X.L. Parco, 2006. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol. Phylogenet. Evol., 38: 621-634. https://doi.org/10.1016/j.ympev.2005.12.004
  50. Pauly, D. and V. Christensen, 1995. Primary production required to sustain global fisheries. Nature, 374: 255-257. https://doi.org/10.1038/374255a0
  51. Romari, K. and D. Vaulot, 2004. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr. 49: 784-798. https://doi.org/10.4319/lo.2004.49.3.0784
  52. Rush, D.B. et al., 2007. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biology, 5: e77. https://doi.org/10.1371/journal.pbio.0050077
  53. Simon, C. and R. Daniel, 2011. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol., 77: 1153-1161. https://doi.org/10.1128/AEM.02345-10
  54. Snoeyenbos-West, O.L.O., T. Salcedo, G.B. McManus and L.A. Katz, 2002. Insights into the diversity of choreotrich and oligotrich ciliates(Class: Spirotrichea) based on genealogical analyses of multiple loci. Int. J. Syst. Evol. Microbiol., 52: 1901-1913. https://doi.org/10.1099/ijs.0.02114-0
  55. Swofford, D.L., 2001. PAUP: Phylogenetic Analysis Using Parsimony( and Other Methods). Sinauer, Sunderland, Massachusetts, USA.
  56. Takano, Y. and T. Horiguchi, 2004. Surface ultrastructure and molecular phylogenetices of four unarmored heterotrophic dinoflagellates, including the type species of the genus Gyrodinium (Dinophyceae). Phycol. Res., 52: 107-116. https://doi.org/10.1111/j.1440-1835.2004.tb00319.x
  57. Tsuda, A., H. Sugisaki, T. Ishimaru, T. Saino and T. Sato, 1993. White-noise-like distribution of the oceanic copepod Neocalanus cristatus in the subarctic North Pacific. Mar. Ecol. Prog. Ser., 97: 39-46. https://doi.org/10.3354/meps097039

Cited by

  1. Literature Survey on the Phytoplankton Flora in the Nakdong River Estuary, Korea vol.46, pp.4, 2013, https://doi.org/10.5657/KFAS.2013.0467
  2. Dynamic genetic features of eukaryotic plankton diversity in the Nakdong River estuary of Korea vol.35, pp.4, 2017, https://doi.org/10.1007/s00343-017-6076-7
  3. 낙동강 하류 물금과 을숙도 수환경의 진핵 플랑크톤 종조성에 대한 분자모니터링 vol.17, pp.3, 2012, https://doi.org/10.7850/jkso.2012.17.3.160
  4. Zooplankton diversity monitoring strategy for the urban coastal region using metabarcoding analysis vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-03656-3