DOI QR코드

DOI QR Code

OWL 모델링을 이용한 개인 추천 서비스

Personalization Recommendation Service using OWL Modeling

  • 안효식 (한남대학교 컴퓨터공학과) ;
  • 정훈 (한남대학교 컴퓨터공학과) ;
  • 장효경 (한남대학교 컴퓨터공학과) ;
  • 최의인 (한남대학교 컴퓨터공학과)
  • 투고 : 2012.01.17
  • 심사 : 2012.02.17
  • 발행 : 2012.02.29

초록

모바일 네트워크 및 디바이스가 빠르게 발전하면서 스마트폰의 보급이 확산되고, 이를 활용한 다양한 부가 서비스들도 성장함에 따라 다양한 서비스를 제공할 수 있는 스마트폰은 향후 가장 주목 받는 기술로 전망되고 있다. 모바일 환경이 빠르게 발전하면서 기존의 PC에서 이루어지던 서비스가 모바일 환경으로 바뀌고 있다. 현재 사용자 추천 서비스를 위해 사용자 상황정보 모델링을 통해 사용자에게 맞는 서비스가 이루어져야 한다. 개인화 추천 서비스를 위해서는 상황인식 기술이 필수적이고, 상황인식을 위해서 상황정보의 적절한 표현 및 정의가 필요하다. 상황정보를 표현하기 위한 방법에는 온톨로지 기반 모델이 표현법이 가장 뛰어나고, 널리 쓰이고 있다. 본 논문에서는 사용자 개인화 추천 서비스를 위하여 상황 정보의 OWL 모델링을 통해 상황을 정의하였으며, 상황 추론을 위하여 추론규칙과 추론엔진을 사용한 서비스 기법을 제시하였다.

The dissemination of smartphones is being spread and supplementary services using smartphones are increasing and various as the Mobile network and device are developing rapidly, so smartphones that enables to provide a wide range of services is expected to receive the most attention. It makes users listen to music anytime, anywhere in real-time, use useful applications, and access to Internet to search for information. The service environment is changing on PC into Mobile due to the change of the circumstance mentioned above. these services are done by using just location information rather than other context, and users have to search services and use them. It is essential to have Context-aware technology for personalization recommendation services and the appropriate representation and definition of Context information for context-aware. Ontology is possible to represent knowledge freely and knowledge can be extended by inferring. In addition, design of the ontology model is needed according to the purposes of utilization. This paper used context-aware technologies to implement a user personalization recommendation service. It also defined the context through OWL modeling for user personalization recommendation service and used inference rules and inference engine for context reasoning.

키워드