초록
본 연구는 최근 그 중요성이 한층 높아지고 있는 침입탐지시스템(IDS, Intrusion Detection System)의 침입탐지모형을 개선하기 위한 방안으로 유전자 알고리즘에 기반한 새로운 통합모형을 제시한다. 본 연구의 제안모형은 서로 상호보완적 관계에 있는 이분류 모형인 로지스틱 회귀분석(LOGIT, Logistic Regression), 의사결정나무(DT, Decision Tree), 인공신경망 (ANN, Artificial Neural Network), 그리고 SVM(Support Vector Machine)의 예측결과에 적절한 가중치를 부여해 최종 예측결과를 산출하도록 하였는데, 이 때 최적 가중치의 탐색을 위한 방법으로는 유전자 알고리즘을 사용한다. 아울러, 본 연구에서는 1차적으로 오탐지율을 최소화하는 최적의 모형을 산출한 뒤, 이어 비대칭 오류비용 개념을 반영해 오탐지로 인해 발생할 수 있는 전체 비용을 최소화할 수 있는 최적 임계치를 탐색, 최종적으로 가장 비용 효율적인 침입탐지모형을 도출하고자 하였다. 본 연구에서는 제안모형의 우수성을 확인하기 위해, 국내 한 공공기관의 보안센서로부터 수집된 로그 데이터를 바탕으로 실증 분석을 수행하였다. 그 결과, 본 연구에서 제안한 유전자 알고리즘 기반 통합모형이 인공신경망이나 SVM만으로 구성된 단일모형에 비해 학습용과 검증용 데이터셋 모두에서 더 우수한 탐지율을 보임을 확인할 수 있었다. 비대칭 오류비용을 고려한 전체 비용의 관점에서도 단일모형으로 된 비교모형에 비해 본 연구의 제안모형이 더 낮은 비용을 나타냄을 확인할 수 있었다. 이렇게 실증적으로 그 효과가 검증된 본 연구의 제안 모형은 앞으로 보다 지능화된 침입탐지시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.
These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.