DOI QR코드

DOI QR Code

Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response

PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링

  • Received : 2011.10.20
  • Accepted : 2012.01.06
  • Published : 2012.02.29

Abstract

The main objective of this study is to examine the feasibility of using lead zirconate titanate (PZT)'s direct piezoelectric response as vibrational feature for damage monitoring in beam structures. For the purpose, modal strain energy (MSE)-based damage monitoring in beam structures using dynamic strain response based on the direct piezoelectric effect of PZT sensor is proposed in this paper. The following approaches are used to achieve the objective. First, the theoretical background of PZT's direct piezoelectric effect for dynamic strain response is presented. Next, the damage monitoring method that utilizes the change in MSE to locate of damage in beam structures is outlined. For validation, forced vibration tests are carried out on lab-scale cantilever beam. For several damage scenarios, dynamic responses are measured by three different sensor types (accelerometer, PZT sensor and electrical strain gage) and damage monitoring tasks are performed thereafter. The performance of PZT's direct piezoelectric response for MSE-based damage monitoring is evaluated by comparing the damage localization results from the three sensor types.

본 연구에서는 PZT 소자의 정압전 효과에 의한 동적 응답신호를 이용하는 보 구조물 손상 모니터링 기법을 제안하였다. 특히, 모드 변형에너지기반 보 구조물 손상 모니터링에 PZT 정압전 응답신호를 입력자료로 활용하는 방안에 대한 연구에 주안점이 있다. 먼저, PZT 소자의 정압전 효과 및 동적 변형률 응답의 이론적 배경을 요약하였다. 다음으로, 모드 변형에너지기반 보 구조물 손상위치 모니터링 기법을 제시하였다. 제시된 기법의 적합성을 검증하기 위해, 캔틸레버 보 모형을 대상으로 강제진동 실험을 수행하였으며, 세 종류의 센서(가속도계, PZT 센서, 변형률계)를 통해 동적 응답신호가 계측되었다. 손상 전후에 계측된 이들 진동신호들을 사용하여 모드 변형에너지기반의 손상위치 모니터링이 수행되었다.

Keywords

References

  1. Bhalla, S., Praveen, K., Gupta A., Datta T.K. (2009) Simplified Impedance Model for Adhesively Bonded Piezo-Impedance Transducers, Journal of Aerospace Engineering, 22(4), pp.373-382. https://doi.org/10.1061/(ASCE)0893-1321(2009)22:4(373)
  2. Brincker, R., Zhang. L., Andersen, P. (2001) Modal Identification of Output-only using Frequency Domain Decomposition, Smart Materials and Structures, 10, pp.441-445. https://doi.org/10.1088/0964-1726/10/3/303
  3. Cristides, S., Barrs, A.D.S. (1990) On-orbit Damage Assessment for Large Space Structures, AIAA Journal, 26, pp.1119-1126.
  4. Farrar, C.R. (2001) Historical Overview of Structural Health Monitoring, Lecture Notes on Structural Health Monitoring Using Statistical Pattern Recognition, Los Alamos Dynamics, Los Alamos, NM.
  5. Gudmunson, P. (1982) Eigenfrequency Changes of Structures Due to Cracks, Notches or other Geometric Changes, Journal of the Mechanics and Physics of Solids, 30, pp.339-353. https://doi.org/10.1016/0022-5096(82)90004-7
  6. Kim, J.T., Stubbs, N. (1995) Model-Uncertainty Impact and Damage-Detection Accuracy in Plate Girder, Journal of Structural Engineering, 121(10), pp.1409-1417. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1409)
  7. Kim, J.T., Park, J.H., Hong, D.S., Ho, D.D. (2011) Hybrid Acceleration-Impedance Sensor Nodes on Imote2-platform for Damage Monitoring in Steel Girder Connections, Smart Structures and Systems, 7(5), pp.393-416. https://doi.org/10.12989/sss.2011.7.5.393
  8. Kim, J.T., Ryu, Y.S., Cho, H.M., Stubbs, N. (2003) Damage Identification in Beam-Type Structures: Frequency-Based Method vs Mode-Shape-Based Method, Engineering Structures, 25, pp.57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  9. Liang, C., Sun, F.P., Rogers, C.A. (1996) Electro-Mechanical Impedance Modeling of Active Material Systems, Smart Materials and Structures, 5(2), pp.171-186. https://doi.org/10.1088/0964-1726/5/2/006
  10. Lynch J.P., Wang, W., Loh, K.J., Yi, J.H., Yun, C.B. (2006) Performance Monitoring of the Geumdang Bridge using a Dense Network of High-Resolution Wireless Sensors, Smart Materials and Structures, 15, pp.1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
  11. Mascarenas, D.L., Todd, M.D., Park, G., Farrar, C.R. (2007) Development of an Impedance-Based Wireless Sensor Node for Structural Health Monitoring, Smart Materials and Structures, 16, pp.2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
  12. Rice, J.A., Mechitov, K., Sim, S.H., Nagayama, T., Jang, S., Kim, R., Spencer, Jr, B.F., Agha, G., Fujino, Y. (2010) Flexible Smart Sensor Framework for Autonomous Structural Health Monitoring, Smart Structures and Systems, 6(5-6), pp.423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
  13. Sirohi, J., Chopra, I. (2000) Fundamental Understanding of Piezoelectric Strain Sensors, Journal of Intelligent Material Systems and Structures, 11, pp.246-257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
  14. Yi, J.H., Yun, C.B. (2004) Comparative Study on Modal Identification Methods using Output-Only Information, Structural Engineering and Mechanics, 17(7), pp.927-944.