DOI QR코드

DOI QR Code

Weight-based Congestion Control Algorithms for H.264/SVC Streaming

H.264/SVC 스트리밍을 위한 가중치 기반 혼잡 제어 알고리즘

  • Kim, Nam-Yun (Dept. of Information System Engineering, Hansung University)
  • 김남윤 (한성대학교 정보시스템공학과)
  • Received : 2012.03.04
  • Accepted : 2012.04.13
  • Published : 2012.04.30

Abstract

Because best-effort Internet provides no guarantees on packet delay and loss, transient network congestion may cause negative effects on H.264/SVC streaming. Thus, the congestion control is required to adjust bit rate by dropping enhancement layers of H.264/SVC streams. This paper differentiates the video streams according to different levels of importance and proposes weighted-based congestion control algorithms to use the rate-distortion characteristics of streams. To maximize the weighted sum of PSNR values of all streams on a bandwidth-constrained node, this paper proposes WNS(Weighted Near-Sighted) and WFS(Weighted Far-Sighted) algorithms to control the number of enhancement layers of streams. Through simulation, this paper shows that weighted-based congestion control algorithm can efficiently adapt streams to network conditions and analyzes the characteristics of congestion control algorithms.

인터넷은 패킷의 지연시간과 손실에 대한 보장을 제공하지 않기 때문에 일시적인 네트워크 혼잡은 H.264/SVC 스트리밍에 부정적인 영향을 줄 수 있다. 따라서 H.264/SVC 향상 계층을 제거하여 전송율을 제어함으로써 혼잡을 회피하는 기법이 필요하다. 본 논문에서는 비디오의 중요도에 따라 스트림을 분류한 후, 스트림의 비트율-왜곡 특성을 이용한 가중치 기반 혼잡 제어 알고리즘을 제안한다. 즉, 제한된 대역폭을 가진 네트워드 노드에서 가중치를 고려한 PSNR의 합을 최대화하기 위해, H.264/SVC 향상 계층의 수를 제어하는 WNS(Weighted Near-Sighted), WFS(Weighted Far-Sighted) 알고리즘을 제안한다. 그리고 시뮬레이션을 통해 가중치 기반 알고리즘의 효용성을 보이고 알고리즘의 특성을 분석한다.

Keywords

References

  1. Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya-Qin Zhang, and Jon M. Peha, "Streaming Video Over the Internet: Approaches and Directions," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 3, March 2001.
  2. Huifang Sun, Anthony Vetro, and Jun Xin, "An Overview of Scalable Video Streaming," Wireless Communications and Mobile Computing, Vol. 7, Issue 2, January 2007.
  3. T. Wiegand, G. Sllivan, J. Reichel, H. Schwarz, and M. Wien, "Joint Draft ITU-T Rec. H.264 - ISO/IEC 14496-10/ Amd.3 Scalable Video Coding," Joint Video Team, Doc. JVT-X201, July 2007.
  4. J. Monteiro, C. Calafate, and M. Nunes, "Evaluation of the H.264 Scalable Video Coding in Error Prone IP Networks," IEEE Transaction on Broadcasting, 54(3), September 2008.
  5. A. Dyahadray, H. Shringarpure, N. Mulay, and G. Saraph, "Congestion Control using Scalable Video Streaming," National Conference on Communications, 2008.
  6. K. Tappayuthpijarn, G. Liebl, T. Stockhammer, and E. Steinbach, "Adaptive Video Streaming over a Mobile Network with TCP-Friendly Rate Control," International Conference on Wireless Communications and Mobile Computing, 2009.
  7. R. Mahalingam, W. Tu, and E. Steinbach, "RD-Optimized Rate Shaping for Multiple Scalable Video Streams," IEEE International Conference on Multimedia and Expo, 2007.
  8. Namyun Kim, Hoyoung Hwang, "Spatial and Temporal Resolution Selection for Bit Stream Extraction in H.264 Scalable Video Coding," Journal of Multimedia Society, 13(1), January 2010.
  9. Namyun Kim, Kitae Hwang, "Layer Selection Algorithms of H.264/SVC Streams for Network Congestion Control," Journal of Multimedia Society, 14(1), January 2011.
  10. C. Basarn, K. Kang, etc, "Bandwidth Consumption Control and Service Differentiation for Video Streaming," In Proceedings of ICCCN 2008.
  11. H. Schwarz, D. Marpe, and T. Wiegand. "Hierarchical B pictures," Joint Video Team, JVT-P014, July 2005.
  12. HHI, SVC reference software, http://ip.hhi.de/imagecom_G1/savce/downloads/SVCReference-Software.htm.
  13. ftp.tnt.uni-hannover.de/pub/svc/testsequences.