References
- Baneld, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803-821. https://doi.org/10.2307/2532201
- Brusco, M. J. and Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering, Psychometrika, 66, 249-270. https://doi.org/10.1007/BF02294838
- Carmone, F. J., Kara, A. and Maxwell, S. (1999). HINoV; A new model to improve market segmentation by identifying noisy variables, Journal of Marketing Research, 36, 501-509. https://doi.org/10.2307/3152003
- De Sarbo, W. S., Carroll, J. D., Clark, L. A. and Green, P. E. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with different weighting of variables, Psychometrika, 49, 57-78. https://doi.org/10.1007/BF02294206
- De Soete, G. (1986). Optimal variable weighting for ultrametric and additive tree clustering, Quality and Quantity, 20, 169-180. https://doi.org/10.1007/BF00227423
- Everitt, B. S., Landau, S. and Leese, M. (2001). Cluster Analysis, Arnold.
- Fowlkes, E. B., Gnanadesikan, R. and Kettenring, J. R. (1987). Variable selection in clustering other contexts, In C.L. Mallows(Ed.), Design, Data and Analysis, 13-34.
- Fowlkes, E. B., Gnanadesikan, R. and Kettenring, J. R. (1988). Variable selection in clustering, Journal of Classication, 5, 205-228.
- Fowlkes, E. B. and Mallows, C. L. (1983). A method for comparing two hierarchical clusterings (with comments and rejoinder), Journal of the American Statistical Association, 78, 553-584. https://doi.org/10.1080/01621459.1983.10478008
- Fraley, C. and Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via modelbased cluster analysis, Computer Journal, 41, 578-588. https://doi.org/10.1093/comjnl/41.8.578
- Gnanadesikan, R., Kettenring, J. R. and Tsao, S. L. (1995). Weighting and selection of variables for cluster analysis, Journal of Classication, 7, 271-285.
- Hubert, L. and Arabie, P. (1985). Comparing partitions, Journal of Classication, 2, 193-218.
- Kim, S. (1999). Interactive visualization of K-means and Hierarchical clusters, The Journal of Data Science and Classication, 3, 13-27.
- Kim, S. (2009). Automated K-means clustering and R implementation, The Korean Journal of Applied Statistics, 22, 723-733. https://doi.org/10.5351/KJAS.2009.22.4.723
- Kim, S.-G. (2011). Variable selection in normal mixture model based clustering under heteroscedasticity, The Korean Journal of Applied Statistics, 24, 1213-1224. https://doi.org/10.5351/KJAS.2011.24.6.1213
- Kim, S., Kwon, S. and Cook, D. (2000). Interactive visualization of hierarchical clusters using MDS and MST, Metrika, 51, 39-51. https://doi.org/10.1007/s001840000043
- Milligan, G. W. (1980a). An examination of six types of the effects of error perturbation on fifteen clustering algorithms, Psychometrika, 45, 325-342. https://doi.org/10.1007/BF02293907
- Milligan, G. W. (1980b). An algorithm for generating artificial test clusters, Psychometrika, 50, 123-127.
- Milligan, G. W. (1989). A validation study of a variable-weighting algorithm for cluster analysis, Journal of Classication, 6, 53-71.
- Milligan, G. and Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159-179. https://doi.org/10.1007/BF02294245
- Mojena, R. (1977). Hierarchical grouping methods and stopping rules: An evaluation, The Computer Journal, 20, 259-363.
- Mojena, R., Wishart, D. and Andrews, G. B. (1980). Stopping rules for Wards' clustering method, COMP- STAT,, 426-432.
- Raftery, A. E. and Dean, N. (2006). Variable selection for model-based clustering, Journal of the American Statistical Assocation, 101, 168-178. https://doi.org/10.1198/016214506000000113
- Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Assocation, 66, 846-850. https://doi.org/10.1080/01621459.1971.10482356
- Qui, W.-L. and Joe, H. (2006). Generation of random clusters with specified degree of separation, Journal of Classication, 23, 315-334.
- Steinley, D. and Brusco, M. J. (2008). A new variable weighting and selection procedure for K-means cluster analysis, Multivariate Behavioral Research, 43, 77-108. https://doi.org/10.1080/00273170701836695
- Waller, N. G., Underhill, J. M. and Kaiser, H. (1999). A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation, Multivariate Behavioral Research, 34, 123-142. https://doi.org/10.1207/S15327906Mb340201
- Ward, J. H. (1963). Hierarchical grouping to optimise an objective function, Journal of American Statistical Association, 58, 236-244. https://doi.org/10.1080/01621459.1963.10500845
Cited by
- Variable Selection and Outlier Detection for Automated K-means Clustering vol.22, pp.1, 2015, https://doi.org/10.5351/CSAM.2015.22.1.055
- Operational Management System and Characteristics Analysis on the Rural Experience Programs:the Case of Comprehensive Rural Village Development Projects vol.21, pp.2, 2015, https://doi.org/10.7851/ksrp.2015.21.2.103