DOI QR코드

DOI QR Code

병렬처리를 통한 정규혼합분포의 추정

Parallel Implementations of the Self-Organizing Network for Normal Mixtures

  • 투고 : 2012.03.18
  • 심사 : 2012.04.20
  • 발행 : 2012.05.31

초록

본 연구에서는 자기조직화 신경망이 필요한 노드만을 가지고 최적화하여 정규혼합분포를 추정하는 모형(Ahn과 Kim, 2011)을 Java언어에서 제공하는 스레드(thread)를 기반으로, 멀티코어 컴퓨팅환경에서 병렬처리방식으로 구현하여 순차처리방식에 비해 짧은 연산시간으로 정규혼합모형의 추정이 가능함을 보이려고 한다. 이를 위하여 Ahn과 Kim이 제안한 모형을 바탕으로 두 가지의 병렬처리 방법을 제안하고 그 성능을 평가하였다. 병렬처리 방법은 Java의 멀티스레드를 이용하여 구현되었으며, 모의실험을 통하여 제안한 모형이 순차처리방식과 비교하여 수렴속도가 빠름을 확인하였다.

This article proposes a couple of parallel implementations of the self-organizing network for normal mixtures. In principle, self-organizing networks should be able to be implemented in a parallel computing environment without issue. However, the network for normal mixtures has inherent problem in being operated parallel in pure sense due to estimating conditional expectations of the mixing proportion in each iteration. This article shows the result of the parallel implementations of the network using Java. According to the results, both of the implementations achieved a faster execution without any performance degradation.

키워드

참고문헌

  1. Ahn, S. and Kim, S. W. (2011). A self-organizing network for normal mixtures, The Korean Communications in Statistics, 18, 837-849. https://doi.org/10.5351/CKSS.2011.18.6.837
  2. Angel, L. D. (1989). The Technology of Parallel Processing, Prentice-Hall.
  3. Celeux, G., Chretien, S., Forbes, F. and Mkhadri, A. (2001). A component-wise EM algorithm for mixtures, Journal of Computational and Graphical Statistics, 10, 697-712. https://doi.org/10.1198/106186001317243403
  4. Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, 39, 1-38.
  5. Kuhn, R. H. and Padua, D. A. (1981). Tutorial on parallel processing, IEEE Tenth International Conference on Parallel Processing.
  6. Liu, C. and Sun, D. X. (1997). Acceleration of EM algorithm for mixture models using ECME, Proceedings of the Statistical Computing Section, Alexandria, VA: ASA, 109-114.
  7. Meng, X. L. and Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm, Journal of the American Statistical Association, 86, 899-909. https://doi.org/10.1080/01621459.1991.10475130
  8. Molodovan, D. I. (1986). Modern Parallel processing, University of Southern California.
  9. Neal, R. M. and Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants, Learning in Graphical Model, 355-368 (Jordan, M. I. et al, Eds). Kluwer Academic Press, Norwell, MA.
  10. Taylor, S. (1989). Parallel Logic Programming Techniques, Prentice-Hall.
  11. Tian, T. and Shih, C-P. (2009). Software techniques for Shared-Cache Multi-Core Systems, Intel Software Network, http://software.intel.com/ en-us/articles/software-techniques-for-shared-cache-multicore-systems/
  12. Titterington, D. M. (1984). Recursive parameter estimation using incomplete data, Journal of the Royal Statistical Society, Series B, 46, 257-267.
  13. Xu, L. and Jordan, M. I. (1996). On convergence properties of the EM algorithm for Gaussian mixtures, Neural Computation, 8, 129-151. https://doi.org/10.1162/neco.1996.8.1.129
  14. Yin, H. and Allinson, N. (2001). Self-organizing mixture networks for probability density estimation, IEEE Transactions on Neural Network, 12, 405-411. https://doi.org/10.1109/72.914534