DOI QR코드

DOI QR Code

Statistical Modeling of Learning Curves with Binary Response Data

이항 반응 자료에 대한 학습곡선의 모형화

  • Lee, Seul-Ji (Department of Statistics, Sungshin Women's University) ;
  • Park, Man-Sik (Department of Statistics, Sungshin Women's University)
  • 이슬지 (성신여자대학교 통계학과) ;
  • 박만식 (성신여자대학교 통계학과)
  • Received : 2012.03.14
  • Accepted : 2012.04.19
  • Published : 2012.05.31

Abstract

As a worker performs a certain operation repeatedly, he tends to become familiar with the job and complete it in a very short time. That means that the efficiency is improved due to his accumulated knowledge, experience and skill in regards to the operation. Investing time in an output is reduced by repeating any operation. This phenomenon is referred to as the learning curve effect. A learning curve is a graphical representation of the changing rate of learning. According to previous literature, learning curve effects are determined by subjective pre-assigned factors. In this study, we propose a new statistical model to clarify the learning curve effect by means of a basic cumulative distribution function. This work mainly focuses on the statistical modeling of binary data. We employ the Newton-Raphson method for the estimation and Delta method for the construction of confidence intervals. We also perform a real data analysis.

연구자가 같은 작업을 반복적으로 수행할 때, 작업 효율성은 연구에 관련된 지식, 경험, 기술이 축적되면서 향상된다. 결과를 얻기 위해 연구에 투자하는 시간은 같은 작업을 반복함으로써 줄일 수 있다. 이러한 현상을 학습곡선 효과(learning curve effect)라고 일컫는다. 학습곡선(learning curves)은 학습의 변화를 시각적으로 나타낸 것으로 이전의 학습곡선 연구에서는 시간을 일정한 구간으로 나누어 구간별 작업에 대한 숙련도의 평균 차이 여부를 확인하였다. 이러한 방법은 구간을 어떻게 나눌 것인가 하는 기준이 존재하지 않으며, 더욱이 이항 반응 자료로 모형을 적합하기 어려운 문제점을 가지고 있다. 본 연구에서는 이산형 확률변수 중 이항 반응 자료(베르누이자료)에 대한 학습곡선의 통계적 모형에 초점을 맞추고자 한다. 누적확률분포의 특성을 이용하여 모수를 추정하기 위해서 뉴튼-랩슨 방법(Newton-Raphson method)을 사용하였고, 이 연구에서 제안한 모형의 점근적 분포를 구하였다.

Keywords

References

  1. 김학선, 최윤락, 이환모, 문성환, 김경희, 박진오, 하중원, 신동은 (2003). 흉곽 내시경을 사용한 척추 기형 수술시 학습곡선, <대한척추외과학회지>, 10, 261-268.
  2. 서강열, 손유동, 안지윤, 안희철, 조준휘 (2010). 학습곡선-누적합 분석을 이용한 흉부압박의 능숙도 평가, <대한응급의학회>, 21, 293-298.
  3. 송수진, 김철호, 김성희, 박은영, 박근식, 문화숙, 김경서, 주보선, 김상갑 (2003). 내시경하 자궁근종절제술의 learning curve, <대한산부회지>, 46, 2345-2351.
  4. 오윤경, 황효순, 이경욱, 송승훈, 이재관, 허준용, 신정호 (2010). 세 명의 산부인과 전문의별 복강경하 전자궁절제술의 학습곡선, , 53, 927-933. https://doi.org/10.5468/kjog.2010.53.10.927
  5. 최유신, 박도중, 이혁준, 김민찬, 김형호, 양한광, 한호성, 이건욱 (2006). 조기위암에 시행된 복강경 보조 원위부 위절제술의 학습곡선 극복 시점 및 극복 전후의 비교, <대한외과학회지>, 70, 370-374.
  6. Adler, P. S. and Clark, K. B. (1991). Behind The learning curve: A sketch of The learning process, Management Science, 37, 267-281. https://doi.org/10.1287/mnsc.37.3.267
  7. Ballantyne, G. H., Ewing, D., Capella, R. F., Capella, J. F., Davis, D., Schmidt, H. J., Wasielewski, A. and Davies, R. J. (2005). The learning curve Measured by Operating Times for Laparoscopic and Open Gastric Bypass: Roles of Surgeon's Experience, Institutional Experience, Body Mass Index and Fellowship Training, Obesity Surgery, 15, 172-182. https://doi.org/10.1381/0960892053268507
  8. Biau, D. J., Williams, S. M., Schlup, M. M., Nizard, R. S. and Porcher, R. (2008). Quantitative and individualized assessment of the learning curve using LC-CUSUM, British Journal of Surgery, 95, 925-929. https://doi.org/10.1002/bjs.6056
  9. Cook, J. A., Ramsay, C. R. and Fayers, P. (2004). Statistical evaluation of learning curve effects in surgical trials, Clinical Trials, 1, 421-427. https://doi.org/10.1191/1740774504cn042oa
  10. Ferguson, G. G., Ames, C. D., Weld, K. J., Yan, Y., Venkatesh, R. and Landman, J. (2005). Prospective evaluation of learning curve for laparoscopic radical prostatectomy: Identification of factors improving operative times, Adult Urology, 66, 840-844. https://doi.org/10.1016/j.urology.2005.04.039
  11. Forbes, T. L., DeRose, G., Kribs, S. W. and Harris, K. A. (2004). Cumulative sum failure analysis of the learning curve with endovascular abdominal aortic aneurysm repair, Journal of Vascular Surgery, 39, 102-108. https://doi.org/10.1016/S0741-5214(03)00922-4
  12. Kim, M. C., Jung, G-J. and Kim, H-H. (2005). learning curve of laparoscopy-assisted distal gastrectomy with systemic lymphadenectomy for early gastric cancer, World Journal of Gastroenterology, 47, 7508-7511.
  13. Lee, J. H., Ryu, K. W., Lee, J-H., Park, S. R., Kim, C. G., Kook, M. C., Nam, B-H., Kim, Y. W. and Bae, J-M. (2006). learning curve for Total Gastrectomy with D2 Lymph Node Dissection: Cumulative sum analysis for qualified surgery, Annals of Surgical Oncology, 13, 1175-1181. https://doi.org/10.1245/s10434-006-9050-8
  14. Lieberman, M. B. (1984). The learning curve and pricing in the chemical processing industries, Rand Journal of Economics, 15, 213-228. https://doi.org/10.2307/2555676
  15. Lim, P. C., Kang, E. and Park, D. H. (2011). A comparative detail analysis of the learning curve and surgical outcome for robotic hysterectomy with lymphadenectomy versus laparoscopic hysterectomy with lymphadenectomy in treatment of endometrial cancer: A case-matched controlled study of the first one hundred twenty two patients, Gynecologic Oncology, 120, 413-418. https://doi.org/10.1016/j.ygyno.2010.11.034
  16. Lim, T. O., Soraya, A., Ding, L. M. and Morad, Z. (2002). Assessing doctors' competence: Application of CUSUM technique in monitoring doctor' performance, International Journal for Quality in Health Care, 14, 251-258. https://doi.org/10.1093/oxfordjournals.intqhc.a002616
  17. Mazzola, J. B. and McCardle, K. F. (1996). A Bayesian approach to managing learning curve uncertainty, Management Science, 42, 680-692. https://doi.org/10.1287/mnsc.42.5.680
  18. Schauer, P., Ikramuddin, S., Hamad, G. and Gourash, W. (2002). The learning curve for laparoscopic Roux-en-Y gastric bypass is 100 cases, Surgical Endoscopy, 17, 212-215.
  19. Sim, H. G., Yip, S. K., Lau,W. K., Tan, Y. H.,Wong, M. Y. and Cheng, C.W. (2006). Team-based approach reduces learning curve in robot-assisted laparoscopic radical prostatectomy, International Journal of Urology, 13, 560-564. https://doi.org/10.1111/j.1442-2042.2006.01354.x
  20. Smith, A. C., Frank, L. M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., Graybiel, A. M., Suzuki, W. A. and Brown, E. N. (2004). Dynamic analysis of learning in behavioral experiments, The Journal of Neuroscience, 24, 447-461. https://doi.org/10.1523/JNEUROSCI.2908-03.2004
  21. Smunt, T. L. (1999). Log-linear and non-log-linear learning curve models for production research and cost estimation, International Journal of Production Research, 37, 3901-3911. https://doi.org/10.1080/002075499189826
  22. Tekkis, P. P., Senagore, A. J., Delaney, C. P. and Fazio, V. W. (2005). Evaluation of the learning curve in Laparoscopic Colorectal Surgery, Annals of Surgery, 242, 83-91. https://doi.org/10.1097/01.sla.0000167857.14690.68
  23. Williams, C. K. I. and Vivarelli, F. (2000). Upper and Lower Bounds on the learning curve for Gaussian Processes, Machine Learning, 40, 77-102. https://doi.org/10.1023/A:1007601601278

Cited by

  1. A Study on the Learning Curve and VOC Factors Affecting of Telecommunication Services vol.39B, pp.8, 2014, https://doi.org/10.7840/kics.2014.39B.8.518
  2. Modeling of The Learning-Curve Effects on Count Responses vol.27, pp.3, 2014, https://doi.org/10.5351/KJAS.2014.27.3.445