References
- Barbato, G., Barini, E. M., Genta, G., and Levi, R. (2011). Features and performance of some outlier detection methods, em Journal of Applied Statistics, 38, 2133-2149. https://doi.org/10.1080/02664763.2010.545119
- Boente, G. and Fraiman, R. (1989). Robust nonparametric regression estimation for dependent observations, The Annals of Statistics, 17, 1242-1256. https://doi.org/10.1214/aos/1176347266
- Carter, C. K. and Eagleson, G. K. (1992). A comparison of variance estimators in nonparametric regression, Journal of the Royal Statistical Society: Series B, 54, 773-780.
- Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression? What is a reasonable choice?, Journal of the Royal Statistical Society: Series B, 60, 751-764. https://doi.org/10.1111/1467-9868.00152
- Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression, Biometrika, 73, 625-633. https://doi.org/10.1093/biomet/73.3.625
- Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: the effect of estimating the mean, Journal of the Royal Statistical Society: Series B, 51, 3-14.
- Hall, P., Kay, J. W. and Titterinton, D. M. (1990). Asymptotically optimal difference-based estimator of variance in nonparametric regression, Biometrika, 77, 521-528. https://doi.org/10.1093/biomet/77.3.521
- Neumann, M. H. (1994). Fully data-driven nonparametric variance estimators, Statistics, 25, 189-212. https://doi.org/10.1080/02331889408802445
- Park, C. G. (2011). Estimation of error variance in nonparametric regression under a finite sample using ridge regression, Journal of Korean Data & Information Science Society, 22, 1223-1232.
- Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of statistics, 12, 1215-1220. https://doi.org/10.1214/aos/1176346788
- Tong, T. and Wang, Y. (2005). Estimating residual variance in nonparametric regression using least squares, Biometrika, 92, 821-830. https://doi.org/10.1093/biomet/92.4.821
- Wahba, G. (1990). Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, SIAM, Philadelphia.
Cited by
- On Rice Estimator in Simple Regression Models with Outliers vol.26, pp.3, 2013, https://doi.org/10.5351/KJAS.2013.26.3.511