DOI QR코드

DOI QR Code

First Order Difference-Based Error Variance Estimator in Nonparametric Regression with a Single Outlier

  • Received : 2012.02.20
  • Accepted : 2012.03.16
  • Published : 2012.05.31

Abstract

We consider some statistical properties of the first order difference-based error variance estimator in nonparametric regression models with a single outlier. So far under an outlier(s) such difference-based estimators has been rarely discussed. We propose the first order difference-based estimator using the leave-one-out method to detect a single outlier and simulate the outlier detection in a nonparametric regression model with the single outlier. Moreover, the outlier detection works well. The results are promising even in nonparametric regression models with many outliers using some difference based estimators.

Keywords

References

  1. Barbato, G., Barini, E. M., Genta, G., and Levi, R. (2011). Features and performance of some outlier detection methods, em Journal of Applied Statistics, 38, 2133-2149. https://doi.org/10.1080/02664763.2010.545119
  2. Boente, G. and Fraiman, R. (1989). Robust nonparametric regression estimation for dependent observations, The Annals of Statistics, 17, 1242-1256. https://doi.org/10.1214/aos/1176347266
  3. Carter, C. K. and Eagleson, G. K. (1992). A comparison of variance estimators in nonparametric regression, Journal of the Royal Statistical Society: Series B, 54, 773-780.
  4. Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression? What is a reasonable choice?, Journal of the Royal Statistical Society: Series B, 60, 751-764. https://doi.org/10.1111/1467-9868.00152
  5. Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression, Biometrika, 73, 625-633. https://doi.org/10.1093/biomet/73.3.625
  6. Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: the effect of estimating the mean, Journal of the Royal Statistical Society: Series B, 51, 3-14.
  7. Hall, P., Kay, J. W. and Titterinton, D. M. (1990). Asymptotically optimal difference-based estimator of variance in nonparametric regression, Biometrika, 77, 521-528. https://doi.org/10.1093/biomet/77.3.521
  8. Neumann, M. H. (1994). Fully data-driven nonparametric variance estimators, Statistics, 25, 189-212. https://doi.org/10.1080/02331889408802445
  9. Park, C. G. (2011). Estimation of error variance in nonparametric regression under a finite sample using ridge regression, Journal of Korean Data & Information Science Society, 22, 1223-1232.
  10. Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of statistics, 12, 1215-1220. https://doi.org/10.1214/aos/1176346788
  11. Tong, T. and Wang, Y. (2005). Estimating residual variance in nonparametric regression using least squares, Biometrika, 92, 821-830. https://doi.org/10.1093/biomet/92.4.821
  12. Wahba, G. (1990). Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, SIAM, Philadelphia.

Cited by

  1. On Rice Estimator in Simple Regression Models with Outliers vol.26, pp.3, 2013, https://doi.org/10.5351/KJAS.2013.26.3.511